Loading [MathJax]/jax/element/mml/optable/SuppMathOperators.js
Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1969, Volume 9, Issue 1, Pages 111–150
DOI: https://doi.org/10.1070/SM1969v009n01ABEH002048
(Mi sm3608)
 

This article is cited in 9 scientific papers (total in 10 papers)

On the representation of analytic functions by Dirichlet series

A. F. Leont'ev
References:
Abstract: We have earlier proved (RZhMat., 1966, 2B149, 11B94) a theorem on the representation of an arbitrary function analytic in a closed convex region ¯D by a Dirichlet series in the open region D. In this paper we prove that any function analytic in an open convex finite region D and continuous in ¯D can be represented by a Dirichlet series with coefficients which can be computed by means of specific already-known formulas.
We also prove that if the convex region D is bounded by a regular analytic curve, then any function analytic in D can be expanded in a Dirichlet series in D. These two theorems are based on the following theorem from the theory of entire functions.
Let D be a finite open region, K(θ) the support function of D, h(θ)=H(θ), and φ(r) a function satisfying the conditions
0<φ(r),limrlnφ(r)r=0.
Then there exists an entire function L(λ) of exponential type with growth indicator h(θ) and completely regular growth, which satisfies the following conditions:
1) All the zeros λ1,λ2, of L(λ) are simple, and |λn+1||λn|.
2) We have the estimate
\bigl|L(re^{i\theta})\bigr|<\frac{e^{h(\theta)r}}{\varphi(r)},\qquad r>r_0.

3) The sequence \{\lambda_n\} is part of a sequence \{\mu_n\}, \lim_{n\to\infty}\frac n{|\mu_n|}<\infty, which depends on the region D but not on the function \varphi(r). In this paper we prove an analogous theorem for entire functions of arbitrary finite order \rho.
Bibliography: 6 titles.
Received: 27.02.1969
Bibliographic databases:
UDC: 517.522.6+517.53
Language: English
Original paper language: Russian
Citation: A. F. Leont'ev, “On the representation of analytic functions by Dirichlet series”, Math. USSR-Sb., 9:1 (1969), 111–150
Citation in format AMSBIB
\Bibitem{Leo69}
\by A.~F.~Leont'ev
\paper On~the representation of analytic functions by Dirichlet series
\jour Math. USSR-Sb.
\yr 1969
\vol 9
\issue 1
\pages 111--150
\mathnet{http://mi.mathnet.ru/eng/sm3608}
\crossref{https://doi.org/10.1070/SM1969v009n01ABEH002048}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=277697}
\zmath{https://zbmath.org/?q=an:0183.34103|0198.10802}
Linking options:
  • https://www.mathnet.ru/eng/sm3608
  • https://doi.org/10.1070/SM1969v009n01ABEH002048
  • https://www.mathnet.ru/eng/sm/v122/i1/p117
  • This publication is cited in the following 10 articles:
    1. A. P. Khromov, “Finite-dimensional perturbations of Volterra operators”, Journal of Mathematical Sciences, 138:5 (2006), 5893–6066  mathnet  crossref  mathscinet  zmath  elib
    2. V. S. Vladimirov, S. M. Nikol'skii, Yu. N. Frolov, “Aleksei Fedorovich Leont'ev (on his sixtieth birthday)”, Russian Math. Surveys, 32:3 (1977), 131–144  mathnet  crossref  mathscinet  zmath
    3. A. F. Leont'ev, “On the representation of analytic functions by series of exponentials in a polycylindrical domain”, Math. USSR-Sb., 29:3 (1976), 327–344  mathnet  crossref  mathscinet  zmath  isi
    4. Yu. I. Mel'nik, “The expansion of analytic functions in Dirichlet series”, Ukr Math J, 27:6 (1976), 672  crossref
    5. Yu. I. Mel'nik, “On the representation of regular functions by Dirichlet series in a closed disk”, Math. USSR-Sb., 26:4 (1975), 449–457  mathnet  crossref  mathscinet  zmath
    6. V. K. Dzyadyk, “On convergence conditions for Dirichlet series on closed polygons”, Math. USSR-Sb., 24:4 (1974), 463–481  mathnet  crossref  mathscinet  zmath
    7. A. F. Leont'ev, “On the representation of analytic functions in a closed convex region by a Dirichlet series”, Math. USSR-Izv., 7:3 (1973), 573–588  mathnet  crossref  mathscinet  zmath
    8. A. F. Leont'ev, “On conditions of expandibility of analytic functions in Dirichlet series”, Math. USSR-Izv., 6:6 (1972), 1265–1277  mathnet  crossref  mathscinet  zmath
    9. A. F. Leont'ev, “On methods of solution of an infinite order equation in the real domain”, Math. USSR-Izv., 4:4 (1970), 859–890  mathnet  crossref  mathscinet  zmath
    10. A. F. Leont'ev, “On the representation of analytic functions in an open region by Dirichlet series”, Math. USSR-Sb., 10:4 (1970), 503–530  mathnet  crossref  mathscinet  zmath
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:664
    Russian version PDF:157
    English version PDF:29
    References:68
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025