Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1969, Volume 9, Issue 1, Pages 111–150
DOI: https://doi.org/10.1070/SM1969v009n01ABEH002048
(Mi sm3608)
 

This article is cited in 9 scientific papers (total in 10 papers)

On the representation of analytic functions by Dirichlet series

A. F. Leont'ev
References:
Abstract: We have earlier proved (RZhMat., 1966, 2B149, 11B94) a theorem on the representation of an arbitrary function analytic in a closed convex region $\overline D$ by a Dirichlet series in the open region $D$. In this paper we prove that any function analytic in an open convex finite region $D$ and continuous in $\overline D$ can be represented by a Dirichlet series with coefficients which can be computed by means of specific already-known formulas.
We also prove that if the convex region $D$ is bounded by a regular analytic curve, then any function analytic in $D$ can be expanded in a Dirichlet series in $D$. These two theorems are based on the following theorem from the theory of entire functions.
Let $D$ be a finite open region, $K(\theta)$ the support function of $D$, $h(\theta)=H(-\theta)$, and $\varphi(r)$ a function satisfying the conditions
$$ 0<\varphi(r)\uparrow\infty,\qquad\lim_{r\to\infty}\frac{\ln\varphi(r)} r=0. $$
Then there exists an entire function $L(\lambda)$ of exponential type with growth indicator $h(\theta)$ and completely regular growth, which satisfies the following conditions:
1) All the zeros $\lambda_1,\lambda_2,\dots$ of $L(\lambda)$ are simple, and $|\lambda_{n+1}|-|\lambda_n|\geqslant h>0$.
2) We have the estimate
$$ \bigl|L(re^{i\theta})\bigr|<\frac{e^{h(\theta)r}}{\varphi(r)},\qquad r>r_0. $$

3) The sequence $\{\lambda_n\}$ is part of a sequence $\{\mu_n\}$, $\lim_{n\to\infty}\frac n{|\mu_n|}<\infty$, which depends on the region $D$ but not on the function $\varphi(r)$. In this paper we prove an analogous theorem for entire functions of arbitrary finite order $\rho$.
Bibliography: 6 titles.
Received: 27.02.1969
Bibliographic databases:
UDC: 517.522.6+517.53
Language: English
Original paper language: Russian
Citation: A. F. Leont'ev, “On the representation of analytic functions by Dirichlet series”, Math. USSR-Sb., 9:1 (1969), 111–150
Citation in format AMSBIB
\Bibitem{Leo69}
\by A.~F.~Leont'ev
\paper On~the representation of analytic functions by Dirichlet series
\jour Math. USSR-Sb.
\yr 1969
\vol 9
\issue 1
\pages 111--150
\mathnet{http://mi.mathnet.ru//eng/sm3608}
\crossref{https://doi.org/10.1070/SM1969v009n01ABEH002048}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=277697}
\zmath{https://zbmath.org/?q=an:0183.34103|0198.10802}
Linking options:
  • https://www.mathnet.ru/eng/sm3608
  • https://doi.org/10.1070/SM1969v009n01ABEH002048
  • https://www.mathnet.ru/eng/sm/v122/i1/p117
  • This publication is cited in the following 10 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:623
    Russian version PDF:150
    English version PDF:20
    References:60
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024