Loading [MathJax]/jax/output/SVG/config.js
Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1969, Volume 9, Issue 1, Pages 1–52
DOI: https://doi.org/10.1070/SM1969v009n01ABEH001281
(Mi sm3604)
 

This article is cited in 13 scientific papers (total in 13 papers)

The limiting equivalence of the canonical and grand canonical ensembles (low density case)

A. M. Khalfina
References:
Abstract: In this paper it is shown that the limiting Gibbs distribution, whose existence was established previously by starting from the grand canonical ensemble, can also be obtained by starting from the canonical ensemble, and both distributions coincide when a certain relation exists between the parameters $\beta$ and $\mu$ (for fixed $\beta$).
The proof is based on the local limit theorem for the number of particles.
Figures: 4.
Bibliography: 12 titles.
Received: 16.07.1968
Bibliographic databases:
UDC: 519.27
Language: English
Original paper language: Russian
Citation: A. M. Khalfina, “The limiting equivalence of the canonical and grand canonical ensembles (low density case)”, Math. USSR-Sb., 9:1 (1969), 1–52
Citation in format AMSBIB
\Bibitem{Kha69}
\by A.~M.~Khalfina
\paper The limiting equivalence of the canonical and grand canonical ensembles (low density case)
\jour Math. USSR-Sb.
\yr 1969
\vol 9
\issue 1
\pages 1--52
\mathnet{http://mi.mathnet.ru/eng/sm3604}
\crossref{https://doi.org/10.1070/SM1969v009n01ABEH001281}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=264953}
Linking options:
  • https://www.mathnet.ru/eng/sm3604
  • https://doi.org/10.1070/SM1969v009n01ABEH001281
  • https://www.mathnet.ru/eng/sm/v122/i1/p3
  • This publication is cited in the following 13 articles:
    1. Hans Zessin, Suren Poghosyan, “A central limit theorem for a classical gas”, Adv Cont Discr Mod, 2023:1 (2023)  crossref
    2. Hans-Otto Georgii, “The equivalence of ensembles for classical systems of particles”, J Statist Phys, 80:5-6 (1995), 1341  crossref  mathscinet  zmath  adsnasa
    3. V. A. Arzumanian, B. S. Nakhapetian, S. K. Pogosyan, “Local limit theorem for the particle number in spin lattice systems”, Theoret. and Math. Phys., 89:2 (1991), 1138–1146  mathnet  crossref  mathscinet  isi
    4. K. S. Matviichuk, “Conditions of existence and stability of a solution of singular Kirkwood–Salsburg equations. Part III”, Theoret. and Math. Phys., 51:1 (1982), 372–381  mathnet  crossref  mathscinet  isi
    5. V. V. Krivolapova, “Equivalence of Gibbs ensembles for classical lattice systems”, Theoret. and Math. Phys., 52:2 (1982), 803–814  mathnet  crossref  mathscinet  isi
    6. O Penrose, Rep Prog Phys, 42:12 (1979), 1937  crossref  adsnasa  isi
    7. K. S. Matviichuk, “Mathematical description of the states of bose and fermi systems by the method of partial density matrices of the canonical ensemble”, Theoret. and Math. Phys., 41:3 (1979), 1067–1079  mathnet  crossref  mathscinet  isi
    8. Yu. R. Dashyan, “Equivalence of the canonical and grand canonical ensembles for one-dimensional systems of quantum statistical mechanics”, Theoret. and Math. Phys., 34:3 (1978), 217–224  mathnet  crossref
    9. Yu. G. Pogorelov, “Cluster property in a classical canonical ensemble”, Theoret. and Math. Phys., 30:3 (1977), 227–232  mathnet  crossref  mathscinet  zmath
    10. A. M. Dolotkazina, “Local limit theorem for a system of particles without hard core”, Theoret. and Math. Phys., 27:2 (1976), 439–442  mathnet  crossref  mathscinet
    11. Ya. G. Sinai, “Construction of dynamics in one-dimensional systems of statistical mechanics”, Theoret. and Math. Phys., 11:2 (1972), 487–494  mathnet  crossref  mathscinet
    12. R. A. Minlos, A. Khaitov, “Equivalence in the limit of thermodynamic ensembles in the case of one-dimensional classical systems”, Funct. Anal. Appl., 6:4 (1972), 337–338  mathnet  crossref  mathscinet
    13. R. A. Minlos, A. M. Khalfina, “Two-dimensional limit theorem for the particle number and energy in the grand canonical ensemble”, Math. USSR-Izv., 4:5 (1970), 1183–1202  mathnet  crossref  mathscinet  zmath
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:566
    Russian version PDF:168
    English version PDF:22
    References:56
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025