Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1969, Volume 8, Issue 3, Pages 357–382
DOI: https://doi.org/10.1070/SM1969v008n03ABEH002042
(Mi sm3594)
 

This article is cited in 5 scientific papers (total in 5 papers)

A class of degenerate elliptic operators

A. V. Fursikov
References:
Abstract: In a bounded region $G\subset R^n$ we consider an operator $A$ which is elliptic inside the region and degenerate on its boundary $\Gamma$. More precisely, the operator $A$ has the following form in the local coordinate system $(x',x_n)$, in which the boundary $\Gamma$ is given by the equation $x_n=0$ and $x_n>0$ for points in the region $G$:
$$ Au=\sum_{|l'|+l_n+\beta\leqslant2m}a_{l',l_n,\beta}(x',x_n)q^\beta x_n^{l_n}D_{x'}^{l'}D_{x_n}^{l_n}u $$
where $q$ is a parameter, and
$$ \sum_{|l'|+l_n+\beta=2m}a_{l',l_n,\beta}(x',0)q^\beta{\xi'}^{l'}{\xi_n}^{l^n}\ne0\quad\text{for}\quad|\xi|+|q|\ne0. $$

The operator $A$ will be proved Noetherian in certain spaces under the condition that $|q|$ is sufficiently large. In addition, some results will be obtained relating to how the smoothness of the solution of the equation $Au=f$ depends on the magnitude of the parameter.
A theorem is formulated concerning unique solvability in approperiate spaces for a class of degenerate parabolic operators.
Bibliography: 8 titles.
Received: 14.11.1968
Russian version:
Matematicheskii Sbornik. Novaya Seriya, 1969, Volume 79(121), Number 3(7), Pages 381–404
Bibliographic databases:
UDC: 517.43
MSC: 47F05, 35J70, 35K65
Language: English
Original paper language: Russian
Citation: A. V. Fursikov, “A class of degenerate elliptic operators”, Mat. Sb. (N.S.), 79(121):3(7) (1969), 381–404; Math. USSR-Sb., 8:3 (1969), 357–382
Citation in format AMSBIB
\Bibitem{Fur69}
\by A.~V.~Fursikov
\paper A~class of degenerate elliptic operators
\jour Mat. Sb. (N.S.)
\yr 1969
\vol 79(121)
\issue 3(7)
\pages 381--404
\mathnet{http://mi.mathnet.ru/sm3594}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=254417}
\zmath{https://zbmath.org/?q=an:0185.19102|0193.07001}
\transl
\jour Math. USSR-Sb.
\yr 1969
\vol 8
\issue 3
\pages 357--382
\crossref{https://doi.org/10.1070/SM1969v008n03ABEH002042}
Linking options:
  • https://www.mathnet.ru/eng/sm3594
  • https://doi.org/10.1070/SM1969v008n03ABEH002042
  • https://www.mathnet.ru/eng/sm/v121/i3/p381
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:347
    Russian version PDF:86
    English version PDF:14
    References:64
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024