Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1969, Volume 8, Issue 3, Pages 345–356
DOI: https://doi.org/10.1070/SM1969v008n03ABEH002041
(Mi sm3593)
 

This article is cited in 2 scientific papers (total in 2 papers)

Compatibility of the coefficients of a generalized second order linear differential equation

I. S. Kats
References:
Abstract: We consider a boundary value problem for the generalized second order differential equation
\begin{equation} -\frac d{dM(x)}\biggl(y^+(x)-\int_{c+0}^{x+0}y(s)dQ(s)\biggr)-\lambda y(x)=0, \end{equation}
where $M(x)$ is a nondecreasing function, and $Q(x)$ is the difference of two nondecreasing functions; $y^+(x)$ designates the right derivative of the function $y(x)$.
Differential equation (1) is a generalization of the differential equation
\begin{equation} -y''+q(x)y-\lambda\rho(x)y=0, \end{equation}
where $\rho(x)\geqslant0$ and $q(x)$ are locally integrable real functions.
Even when equation (1) is considered on a finite interval and the functions $M(x)$ and $Q(x)$ have bounded variation there (the regular case), it may turn out that not every function in $L_M^{(2)}$ can be expanded in solutions of equation (1) (for equation (2) this is exceptional). In this paper we find a condition which is necessary and sufficient for any function $f(x)\in L_M^{(2)}$ to expand in the solutions (“eigenfunctions”) of the boundary value problem with equation of the form (1); in the case when this condition is not fulfilled, we find the class of all functions in $L_M^{(2)}$ which can be expanded in these “eigenfunctions”.
Bibliography: 5 titles.
Received: 23.09.1968
Bibliographic databases:
UDC: 517.941.91
MSC: 34B05, 34A30, 34L05
Language: English
Original paper language: Russian
Citation: I. S. Kats, “Compatibility of the coefficients of a generalized second order linear differential equation”, Math. USSR-Sb., 8:3 (1969), 345–356
Citation in format AMSBIB
\Bibitem{Kat69}
\by I.~S.~Kats
\paper Compatibility of the coefficients of a~generalized second order linear differential equation
\jour Math. USSR-Sb.
\yr 1969
\vol 8
\issue 3
\pages 345--356
\mathnet{http://mi.mathnet.ru//eng/sm3593}
\crossref{https://doi.org/10.1070/SM1969v008n03ABEH002041}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=252746}
\zmath{https://zbmath.org/?q=an:0193.04701|0196.10202}
Linking options:
  • https://www.mathnet.ru/eng/sm3593
  • https://doi.org/10.1070/SM1969v008n03ABEH002041
  • https://www.mathnet.ru/eng/sm/v121/i3/p368
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:478
    Russian version PDF:94
    English version PDF:18
    References:66
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025