Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2007, Volume 198, Issue 6, Pages 817–838
DOI: https://doi.org/10.1070/SM2007v198n06ABEH003862
(Mi sm3535)
 

This article is cited in 2 scientific papers (total in 2 papers)

Convergence in gradient systems with branching of equilibria

V. A. Galaktionova, S. I. Pokhozhaevb, A. E. Shishkovc

a University of Bath
b Steklov Mathematical Institute, Russian Academy of Sciences
c Institute of Applied Mathematics and Mechanics, Ukraine National Academy of Sciences
References:
Abstract: The basic model is a semilinear elliptic equation with coercive $C^1$ non-linearity: $\Delta\psi+f(\psi)=0$ in $\Omega$, $\psi=0$ on $\partial\Omega$, where $\Omega\subset\mathbb R^N$ is a bounded smooth domain. The main hypothesis $(H_R)$ about resonance branching is as follows: if a branching of equilibria occurs at a point $\psi$ with $k$-dimensional kernel of the linearized operator $\Delta+f'(\psi)I$, then the branching subset $S_k$ at $\psi$ is a locally smooth $k$-dimensional manifold.
For $N=1$ the first result on the stabilization to a single equilibrium is due to Zelenyak (1968).
It is shown that Zelenyak's approach, which is based on the analysis of Lyapunov functions, can be extended to general gradient systems in Hilbert spaces with smooth resonance branching. The case of asymptotically small non-autonomous perturbations of such systems is also considered.
The approach developed here represents an alternative to Hale's stabilization method (1992) and other similar techniques in the theory of gradient systems.
Bibliography: 32 titles.
Received: 29.08.2006
Russian version:
Matematicheskii Sbornik, 2007, Volume 198, Number 6, Pages 65–88
DOI: https://doi.org/10.4213/sm3535
Bibliographic databases:
Document Type: Article
UDC: 517.954
MSC: 35J65, 35K60, 35B40
Language: English
Original paper language: Russian
Citation: V. A. Galaktionov, S. I. Pokhozhaev, A. E. Shishkov, “Convergence in gradient systems with branching of equilibria”, Mat. Sb., 198:6 (2007), 65–88; Sb. Math., 198:6 (2007), 817–838
Citation in format AMSBIB
\Bibitem{GalPokShi07}
\by V.~A.~Galaktionov, S.~I.~Pokhozhaev, A.~E.~Shishkov
\paper Convergence in gradient systems with branching of
equilibria
\jour Mat. Sb.
\yr 2007
\vol 198
\issue 6
\pages 65--88
\mathnet{http://mi.mathnet.ru/sm3535}
\crossref{https://doi.org/10.4213/sm3535}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2355365}
\zmath{https://zbmath.org/?q=an:05360605}
\elib{https://elibrary.ru/item.asp?id=9512219}
\transl
\jour Sb. Math.
\yr 2007
\vol 198
\issue 6
\pages 817--838
\crossref{https://doi.org/10.1070/SM2007v198n06ABEH003862}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000249041900012}
\elib{https://elibrary.ru/item.asp?id=14633375}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-34548583974}
Linking options:
  • https://www.mathnet.ru/eng/sm3535
  • https://doi.org/10.1070/SM2007v198n06ABEH003862
  • https://www.mathnet.ru/eng/sm/v198/i6/p65
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:526
    Russian version PDF:236
    English version PDF:14
    References:63
    First page:12
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024