Abstract:
Let the variables in Rk+nRk+n be broken up into two groups x=(x′,y), where x′∈Rk and y∈Rn. We consider differential operators p(x,D) with polynomial symbols of the form
p(x,D)=∑|α|+|β|⩽m,|γ|⩽mδa\alphayβγyγDβx′Dαy,(ξ,η)∈Rk×Rn,
where δ>0. We assume that the symbol p(x,ξ,η) is quasihomogeneous:
p(yλ;λ1+δξ,λη)=λmp(y;ξ,η)∀λ>0
and that p(x,D) is elliptic for y≠0. We have found a necessary and sufficient condition for operators of this class to be hypoelliptic: namely, that the equation p(y;ξ,Dy)v(y)=\nobreak0, ξ≠0, have no nontrivial solutions in S(Rny). Thus for example, the operator Δly+|y|2rΔlx′ is hypoelliptic for any integers l>0 and r>0, and the operator Δ2y+|y|4Δ2x′+λΔx′ is hypoelliptic if and only if λ is not an eigenvalue of the operator Δ2y+|y|4 in L2(Rny). These results are partially extended to operators with variable coefficients and to pseudodifferential operators.
Bibliography: 22 titles.
This publication is cited in the following 103 articles:
Min Liu, Rui Sun, “Non-degeneracy of bubbling solutions and applications for a critical Grushin-type problem”, CPAA, 24:5 (2025), 773
Olivier Druet, Emmanuel Hebey, “Extremal functions for twisted sharp Sobolev inequalities with lower order remainder terms”, Nonlinear Analysis, 255 (2025), 113758
Hua Chen, Xin Liao, “Liouville theorem for Lane-Emden equation of Baouendi-Grushin operators”, Journal of Differential Equations, 430 (2025), 113201
Claudianor Oliveira Alves, Angelo Roncalli Furtado de Holanda, “Existence of the solution for a class of the semilinear degenerate elliptic equation involving the Grushin operator in R2$\mathbb {R}^2$: The interaction between Grushin's critical exponent and exponential growth”, Mathematische Nachrichten, 297:3 (2024), 861
Antonio Bove, “Analytic and Gevrey regularity for certain sums of two squares in two variables”, Tohoku Math. J. (2), 76:1 (2024)
Claudianor O. Alves, Somnath Gandal, Annunziata Loiudice, Jagmohan Tyagi, “A Brézis–Nirenberg Type Problem for a Class of Degenerate Elliptic Problems Involving the Grushin Operator”, J Geom Anal, 34:2 (2024)
Luiz C. B. da Silva, Rafael López, “Catenaries in Riemannian surfaces”, São Paulo J. Math. Sci., 2024
Hairong Liu, Xiaoping Yang, “Strong unique continuation property for fourth order Baouendi-Grushin type subelliptic operators with strongly singular potential”, Journal of Differential Equations, 385 (2024), 57
Hua Chen, Xin Liao, Ming Zhang, “Dirichlet problem for a class of nonlinear degenerate elliptic operators with critical growth and logarithmic perturbation”, Calc. Var., 63:5 (2024)
G. G. Kazaryan, “Koertsitivnye otsenki dlya mnogosloino-vyrozhdayuschikhsya differentsialnykh operatorov”, Funktsionalnye prostranstva. Differentsialnye operatory. Problemy
matematicheskogo obrazovaniya, SMFN, 70, no. 1, Rossiiskii universitet druzhby narodov, M., 2024, 99–120
Claudianor O. Alves, Angelo R. F. de Holanda, “A Berestycki–Lions type result for a class of degenerate elliptic problems involving the Grushin operator”, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 153:4 (2023), 1244
Ji Zheng Huang, Xin Xin Yang, “P-Laplace Equation for the Grushin Type Operator”, Acta. Math. Sin.-English Ser., 39:5 (2023), 923
G. G. Kazaryan, V. N. Margaryan, “Ob odnom klasse vyrozhdayuschikhsya gipoellipticheskikh mnogochlenov”, Tr. MMO, 83, no. 1, MTsNMO, M., 2022, 181–217
Setsuo TANIGUCHI, “ON THE TRANSITION DENSITY FUNCTION OF THE DIFFUSION PROCESS GENERATED BY THE GRUSHIN OPERATOR”, Kyushu J. Math., 76:1 (2022), 187
Cyprien Tamekue, “Null Controllability of the Parabolic Spherical Grushin Equation”, ESAIM: COCV, 28 (2022), 70
Jingbo Dou, Liming Sun, Lei Wang, Meijun Zhu, “Divergent operator with degeneracy and related sharp inequalities”, Journal of Functional Analysis, 282:2 (2022), 109294
Valentina Casarino, Paolo Ciatti, Alessio Martini, “Weighted Spectral Cluster Bounds and a Sharp Multiplier Theorem for Ultraspherical Grushin Operators”, International Mathematics Research Notices, 2022:12 (2022), 9209
Ahmed Alsaedi, Vicenţiu D. Rădulescu, Bashir Ahmad, “Bifurcation analysis for degenerate problems with mixed regime and absorption”, Bull. Math. Sci., 11:01 (2021), 2050017
Hairong Liu, Xiaoping Yang, “Critical points and level sets of Grushin-Harmonic functions in the plane”, JAMA, 143:2 (2021), 435
M. D'Abbicco, K. Fujiwara, “A test function method for evolution equations with fractional powers of the Laplace operator”, Nonlinear Analysis, 202 (2021), 112114