Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1970, Volume 12, Issue 3, Pages 458–476
DOI: https://doi.org/10.1070/SM1970v012n03ABEH000931
(Mi sm3522)
 

This article is cited in 100 scientific papers (total in 100 papers)

On a class of hypoelliptic operators

V. V. Grushin
References:
Abstract: Let the variables in $R^{k+n}$ be broken up into two groups $x=(x',y)$, where $x'\in R^k$ and $y\in R^n$. We consider differential operators $p(x,D)$ with polynomial symbols of the form
$$ p(x,D)=\sum_{|\alpha|+|\beta|\leqslant m,\,|\gamma|\leqslant m\delta}a_{\alphay\beta\gamma}y^\gamma D_{x'}^\beta D_y^\alpha,\qquad(\xi,\eta)\in R^k\times R^n, $$
where $\delta>0$. We assume that the symbol $p(x,\xi,\eta)$ is quasihomogeneous:
$$ p\biggl(\frac y\lambda;\lambda^{1+\delta}\xi,\lambda\eta\biggr)=\lambda^mp(y;\xi,\eta)\qquad\forall\,\lambda>0 $$
and that $p(x,D)$ is elliptic for $y\ne0$. We have found a necessary and sufficient condition for operators of this class to be hypoelliptic: namely, that the equation $p(y;\xi,D_y)v(y)=\nobreak0$, $\xi\ne0$, have no nontrivial solutions in $S(R_y^n)$. Thus for example, the operator $\Delta_y^l+|y|^{2r}\Delta_{x'}^l$ is hypoelliptic for any integers $l>0$ and $r>0$, and the operator $\Delta^2_y+|y|^4\Delta_{x'}^2+\lambda\Delta_{x'}$ is hypoelliptic if and only if $\lambda$ is not an eigenvalue of the operator $\Delta^2_y+|y|^4$ in $L_2(R_y^n)$. These results are partially extended to operators with variable coefficients and to pseudodifferential operators.
Bibliography: 22 titles.
Received: 06.03.1970
Bibliographic databases:
UDC: 517.43
Language: English
Original paper language: Russian
Citation: V. V. Grushin, “On a class of hypoelliptic operators”, Math. USSR-Sb., 12:3 (1970), 458–476
Citation in format AMSBIB
\Bibitem{Gru70}
\by V.~V.~Grushin
\paper On~a~class of hypoelliptic operators
\jour Math. USSR-Sb.
\yr 1970
\vol 12
\issue 3
\pages 458--476
\mathnet{http://mi.mathnet.ru//eng/sm3522}
\crossref{https://doi.org/10.1070/SM1970v012n03ABEH000931}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=279436}
\zmath{https://zbmath.org/?q=an:0211.40503}
Linking options:
  • https://www.mathnet.ru/eng/sm3522
  • https://doi.org/10.1070/SM1970v012n03ABEH000931
  • https://www.mathnet.ru/eng/sm/v125/i3/p456
  • This publication is cited in the following 100 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:1283
    Russian version PDF:366
    English version PDF:94
    References:89
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024