Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1970, Volume 12, Issue 3, Pages 458–476
DOI: https://doi.org/10.1070/SM1970v012n03ABEH000931
(Mi sm3522)
 

This article is cited in 103 scientific papers (total in 103 papers)

On a class of hypoelliptic operators

V. V. Grushin
References:
Abstract: Let the variables in Rk+nRk+n be broken up into two groups x=(x,y), where xRk and yRn. We consider differential operators p(x,D) with polynomial symbols of the form
p(x,D)=|α|+|β|m,|γ|mδa\alphayβγyγDβxDαy,(ξ,η)Rk×Rn,
where δ>0. We assume that the symbol p(x,ξ,η) is quasihomogeneous:
p(yλ;λ1+δξ,λη)=λmp(y;ξ,η)λ>0
and that p(x,D) is elliptic for y0. We have found a necessary and sufficient condition for operators of this class to be hypoelliptic: namely, that the equation p(y;ξ,Dy)v(y)=\nobreak0, ξ0, have no nontrivial solutions in S(Rny). Thus for example, the operator Δly+|y|2rΔlx is hypoelliptic for any integers l>0 and r>0, and the operator Δ2y+|y|4Δ2x+λΔx is hypoelliptic if and only if λ is not an eigenvalue of the operator Δ2y+|y|4 in L2(Rny). These results are partially extended to operators with variable coefficients and to pseudodifferential operators.
Bibliography: 22 titles.
Received: 06.03.1970
Bibliographic databases:
UDC: 517.43
Language: English
Original paper language: Russian
Citation: V. V. Grushin, “On a class of hypoelliptic operators”, Math. USSR-Sb., 12:3 (1970), 458–476
Citation in format AMSBIB
\Bibitem{Gru70}
\by V.~V.~Grushin
\paper On~a~class of hypoelliptic operators
\jour Math. USSR-Sb.
\yr 1970
\vol 12
\issue 3
\pages 458--476
\mathnet{http://mi.mathnet.ru/eng/sm3522}
\crossref{https://doi.org/10.1070/SM1970v012n03ABEH000931}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=279436}
\zmath{https://zbmath.org/?q=an:0211.40503}
Linking options:
  • https://www.mathnet.ru/eng/sm3522
  • https://doi.org/10.1070/SM1970v012n03ABEH000931
  • https://www.mathnet.ru/eng/sm/v125/i3/p456
  • This publication is cited in the following 103 articles:
    1. Min Liu, Rui Sun, “Non-degeneracy of bubbling solutions and applications for a critical Grushin-type problem”, CPAA, 24:5 (2025), 773  crossref
    2. Olivier Druet, Emmanuel Hebey, “Extremal functions for twisted sharp Sobolev inequalities with lower order remainder terms”, Nonlinear Analysis, 255 (2025), 113758  crossref
    3. Hua Chen, Xin Liao, “Liouville theorem for Lane-Emden equation of Baouendi-Grushin operators”, Journal of Differential Equations, 430 (2025), 113201  crossref
    4. Claudianor Oliveira Alves, Angelo Roncalli Furtado de Holanda, “Existence of the solution for a class of the semilinear degenerate elliptic equation involving the Grushin operator in R2$\mathbb {R}^2$: The interaction between Grushin's critical exponent and exponential growth”, Mathematische Nachrichten, 297:3 (2024), 861  crossref
    5. Antonio Bove, “Analytic and Gevrey regularity for certain sums of two squares in two variables”, Tohoku Math. J. (2), 76:1 (2024)  crossref
    6. Claudianor O. Alves, Somnath Gandal, Annunziata Loiudice, Jagmohan Tyagi, “A Brézis–Nirenberg Type Problem for a Class of Degenerate Elliptic Problems Involving the Grushin Operator”, J Geom Anal, 34:2 (2024)  crossref
    7. Luiz C. B. da Silva, Rafael López, “Catenaries in Riemannian surfaces”, São Paulo J. Math. Sci., 2024  crossref
    8. Hairong Liu, Xiaoping Yang, “Strong unique continuation property for fourth order Baouendi-Grushin type subelliptic operators with strongly singular potential”, Journal of Differential Equations, 385 (2024), 57  crossref
    9. Hua Chen, Xin Liao, Ming Zhang, “Dirichlet problem for a class of nonlinear degenerate elliptic operators with critical growth and logarithmic perturbation”, Calc. Var., 63:5 (2024)  crossref
    10. G. G. Kazaryan, “Koertsitivnye otsenki dlya mnogosloino-vyrozhdayuschikhsya differentsialnykh operatorov”, Funktsionalnye prostranstva. Differentsialnye operatory. Problemy matematicheskogo obrazovaniya, SMFN, 70, no. 1, Rossiiskii universitet druzhby narodov, M., 2024, 99–120  mathnet  crossref
    11. Claudianor O. Alves, Angelo R. F. de Holanda, “A Berestycki–Lions type result for a class of degenerate elliptic problems involving the Grushin operator”, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 153:4 (2023), 1244  crossref
    12. Ji Zheng Huang, Xin Xin Yang, “P-Laplace Equation for the Grushin Type Operator”, Acta. Math. Sin.-English Ser., 39:5 (2023), 923  crossref
    13. G. G. Kazaryan, V. N. Margaryan, “Ob odnom klasse vyrozhdayuschikhsya gipoellipticheskikh mnogochlenov”, Tr. MMO, 83, no. 1, MTsNMO, M., 2022, 181–217  mathnet
    14. Setsuo TANIGUCHI, “ON THE TRANSITION DENSITY FUNCTION OF THE DIFFUSION PROCESS GENERATED BY THE GRUSHIN OPERATOR”, Kyushu J. Math., 76:1 (2022), 187  crossref
    15. Cyprien Tamekue, “Null Controllability of the Parabolic Spherical Grushin Equation”, ESAIM: COCV, 28 (2022), 70  crossref
    16. Jingbo Dou, Liming Sun, Lei Wang, Meijun Zhu, “Divergent operator with degeneracy and related sharp inequalities”, Journal of Functional Analysis, 282:2 (2022), 109294  crossref
    17. Valentina Casarino, Paolo Ciatti, Alessio Martini, “Weighted Spectral Cluster Bounds and a Sharp Multiplier Theorem for Ultraspherical Grushin Operators”, International Mathematics Research Notices, 2022:12 (2022), 9209  crossref
    18. Ahmed Alsaedi, Vicenţiu D. Rădulescu, Bashir Ahmad, “Bifurcation analysis for degenerate problems with mixed regime and absorption”, Bull. Math. Sci., 11:01 (2021), 2050017  crossref
    19. Hairong Liu, Xiaoping Yang, “Critical points and level sets of Grushin-Harmonic functions in the plane”, JAMA, 143:2 (2021), 435  crossref
    20. M. D'Abbicco, K. Fujiwara, “A test function method for evolution equations with fractional powers of the Laplace operator”, Nonlinear Analysis, 202 (2021), 112114  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:1343
    Russian version PDF:374
    English version PDF:109
    References:104
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025