Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1970, Volume 12, Issue 3, Pages 387–403
DOI: https://doi.org/10.1070/SM1970v012n03ABEH000927
(Mi sm3518)
 

This article is cited in 1 scientific paper (total in 1 paper)

Criteria for normal solvability of systems of singular integral equations and Wiener–Hopf equations

J. Laiterer
References:
Abstract: Let $\Gamma$ be the unit circle and let $L^k$ ($k=1,2,\dots$) be the Hilbert space of vector functions $f(\zeta)=\{f_j(\zeta)\}_{j=1}^k$ with coordinates in $L_2(\Gamma)$.
Theorem. {\it Let $a(\zeta),b(\zeta)$ $(\zeta\in\Gamma)$ be $m\times n$ matrices with elements continuous on $\Gamma$. In order for the singular integral operator $T,$ from $L^n$ to $L^m,$
$$ (Tf)(\zeta)=c(\zeta)f(\zeta)+\frac{d(\zeta)}{\pi i}\int_\Gamma\frac{f(z)}{z-\zeta}\,dz\qquad(f\in L^n) $$
to be normally solvable it is necessary and sufficient for the following two conditions to be satisfied}.
a) The rank of each of the matrices $c(\zeta)+d(\zeta)$ and $c(\zeta)-d(\zeta)$ is independent of $\zeta$ on the unit circumference.
b) {\it$\inf_{x\in(\operatorname{Ker}\,T)^\perp,\,\|x\|=1}\{\rho(Px,\operatorname{Ker}aI)+\rho(Qx,\operatorname{Ker}bI)\}>0.$}
By $P$ we denote the orthogonal projector in $L^n$ defined by $(Pf)(\zeta)=\frac12f(\zeta)+\frac1{2\pi i}\int_\Gamma\frac{f(z)}{z-\zeta}\,dz$ ($f\in L^n$), $Q=I-P$. The conditions a) and b) are independent.
The theorem is applicable to equations of Wiener–Hopf type.
Bibliography: 11 titles.
Received: 30.01.1970
Bibliographic databases:
UDC: 517.948.3
Language: English
Original paper language: Russian
Citation: J. Laiterer, “Criteria for normal solvability of systems of singular integral equations and Wiener–Hopf equations”, Math. USSR-Sb., 12:3 (1970), 387–403
Citation in format AMSBIB
\Bibitem{Lai70}
\by J.~Laiterer
\paper Criteria for normal solvability of systems of singular integral equations and Wiener--Hopf equations
\jour Math. USSR-Sb.
\yr 1970
\vol 12
\issue 3
\pages 387--403
\mathnet{http://mi.mathnet.ru//eng/sm3518}
\crossref{https://doi.org/10.1070/SM1970v012n03ABEH000927}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=275085}
\zmath{https://zbmath.org/?q=an:0201.44001}
Linking options:
  • https://www.mathnet.ru/eng/sm3518
  • https://doi.org/10.1070/SM1970v012n03ABEH000927
  • https://www.mathnet.ru/eng/sm/v125/i3/p390
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:260
    Russian version PDF:78
    English version PDF:16
    References:40
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024