|
This article is cited in 1 scientific paper (total in 1 paper)
Criteria for normal solvability of systems of singular integral equations and Wiener–Hopf equations
J. Laiterer
Abstract:
Let $\Gamma$ be the unit circle and let $L^k$ ($k=1,2,\dots$) be the Hilbert space of vector functions $f(\zeta)=\{f_j(\zeta)\}_{j=1}^k$ with coordinates in $L_2(\Gamma)$.
Theorem. {\it Let $a(\zeta),b(\zeta)$ $(\zeta\in\Gamma)$ be $m\times n$ matrices with elements continuous on $\Gamma$. In order for the singular integral operator $T,$ from $L^n$ to $L^m,$
$$
(Tf)(\zeta)=c(\zeta)f(\zeta)+\frac{d(\zeta)}{\pi i}\int_\Gamma\frac{f(z)}{z-\zeta}\,dz\qquad(f\in L^n)
$$
to be normally solvable it is necessary and sufficient for the following two conditions to be satisfied}.
a) The rank of each of the matrices $c(\zeta)+d(\zeta)$ and $c(\zeta)-d(\zeta)$ is independent of $\zeta$ on the unit circumference.
b) {\it$\inf_{x\in(\operatorname{Ker}\,T)^\perp,\,\|x\|=1}\{\rho(Px,\operatorname{Ker}aI)+\rho(Qx,\operatorname{Ker}bI)\}>0.$}
By $P$ we denote the orthogonal projector in $L^n$ defined by $(Pf)(\zeta)=\frac12f(\zeta)+\frac1{2\pi i}\int_\Gamma\frac{f(z)}{z-\zeta}\,dz$ ($f\in L^n$), $Q=I-P$. The conditions a) and b) are independent.
The theorem is applicable to equations of Wiener–Hopf type.
Bibliography: 11 titles.
Received: 30.01.1970
Citation:
J. Laiterer, “Criteria for normal solvability of systems of singular integral equations and Wiener–Hopf equations”, Math. USSR-Sb., 12:3 (1970), 387–403
Linking options:
https://www.mathnet.ru/eng/sm3518https://doi.org/10.1070/SM1970v012n03ABEH000927 https://www.mathnet.ru/eng/sm/v125/i3/p390
|
Statistics & downloads: |
Abstract page: | 260 | Russian version PDF: | 78 | English version PDF: | 16 | References: | 40 |
|