Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1970, Volume 12, Issue 2, Pages 159–176
DOI: https://doi.org/10.1070/SM1970v012n02ABEH000915
(Mi sm3506)
 

Representation of arbitrary functions by certain special series

A. P. Khromov
References:
Abstract: Let $M(x,t)$ be continuous for $0\leqslant t\leqslant x$, $0\leqslant x\leqslant1$ and let $g(x)$ be of bounded variation in $[0,1]$. Further, let $M(x,t,\lambda)=\sum_{k=0}^\infty\lambda^kM_k(x,t)$, where $M_1(x,t)=M(x,t)$, and $M_k(x,t)=\int_t^xM_{k-1}(x,\tau)M(\tau,t)\,d\tau$ for $k>1$. The paper studies the problem of the representation of a certain class of functions by series whose partial sums are given by
$$ P_n(x,f)=\frac1{2\pi i}\int_{C_n}\frac{\varphi(x,\lambda)}{L(\lambda)}\int_0^1\int_0^xM(x,t,\lambda)f(t)\,dt\,dg(x)\qquad(n=1,2,\dots), $$
where $f(x)$ is the expanded function, $\varphi(x,\lambda)=\psi(x)+\lambda\int_0^xM(x,t,\lambda)\psi(t)\,dt$, $\psi(x)\in C[0,1]$, $L(\lambda)=\int_0^1\varphi(x,\lambda)\,dg(x)$ and is $\{C_n\}^\infty_{n=1}$ a sequence of circles in the $\lambda$-plane with common center at zero and radii $r_n\uparrow+\infty$. This problem contains, in particular, the problem of expansion in the eigenfunctions of an ordinary differential equation in $[0,1]$ with certain irregular decomposing boundary conditions.
Bibliography: 5 titles.
Received: 26.11.1969
Russian version:
Matematicheskii Sbornik. Novaya Seriya, 1970, Volume 83(125), Number 2(10), Pages 165–180
Bibliographic databases:
UDC: 517.512
Language: English
Original paper language: Russian
Citation: A. P. Khromov, “Representation of arbitrary functions by certain special series”, Mat. Sb. (N.S.), 83(125):2(10) (1970), 165–180; Math. USSR-Sb., 12:2 (1970), 159–176
Citation in format AMSBIB
\Bibitem{Khr70}
\by A.~P.~Khromov
\paper Representation of arbitrary functions by certain special series
\jour Mat. Sb. (N.S.)
\yr 1970
\vol 83(125)
\issue 2(10)
\pages 165--180
\mathnet{http://mi.mathnet.ru/sm3506}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=282112}
\zmath{https://zbmath.org/?q=an:0206.34902}
\transl
\jour Math. USSR-Sb.
\yr 1970
\vol 12
\issue 2
\pages 159--176
\crossref{https://doi.org/10.1070/SM1970v012n02ABEH000915}
Linking options:
  • https://www.mathnet.ru/eng/sm3506
  • https://doi.org/10.1070/SM1970v012n02ABEH000915
  • https://www.mathnet.ru/eng/sm/v125/i2/p165
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:403
    Russian version PDF:116
    English version PDF:19
    References:59
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024