|
This article is cited in 10 scientific papers (total in 10 papers)
On projective modules over polynomial rings
A. A. Suslin
Abstract:
We prove that every projective module of rank greater than $\frac{n+1}2$ over the ring $k[X_1,\dots,X_n]$ is free if $k$ is an infinite field.
Bibliography: 5 titles.
Received: 04.06.1973
Citation:
A. A. Suslin, “On projective modules over polynomial rings”, Mat. Sb. (N.S.), 93(135):4 (1974), 588–595; Math. USSR-Sb., 22:4 (1974), 595–602
Linking options:
https://www.mathnet.ru/eng/sm3484https://doi.org/10.1070/SM1974v022n04ABEH001708 https://www.mathnet.ru/eng/sm/v135/i4/p588
|
Statistics & downloads: |
Abstract page: | 568 | Russian version PDF: | 262 | English version PDF: | 17 | References: | 58 | First page: | 2 |
|