Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1970, Volume 11, Issue 4, Pages 529–538
DOI: https://doi.org/10.1070/SM1970v011n04ABEH002074
(Mi sm3468)
 

On the reconstruction of a function from the known coefficients of the corresponding Dirichlet series

V. I. Shevtsov
References:
Abstract: Let $L(\lambda)=\displaystyle\sum_{k=0}^\infty c_k\lambda^k$ be an entire function of order $\rho_1$ ($1<\rho_1<2$). We denote by $\lambda_1,\lambda_2,\dots,\lambda_n,\dots$ the zeros of the function $L(\lambda)$. It is assumed that all the zeros of the function $L(\lambda)$ are simple, and that $\lim_{n\to\infty}\frac n{\lambda_n^{\rho_1}}=\tau\ne0,\infty$.
We take an arbitrary function $F(z)=\sum_{n=0}^\infty b_nz^n$ of order $\nu<\frac{\rho_1}{\rho_1-1}$. We associate with the function $F(z)$ the series
\begin{equation} F(z)\thicksim\sum_{n=1}^\infty A_ne^{\lambda_nz},\qquad A_n=\frac{\omega_L(\lambda_n,F)}{L'(\lambda_n)}, \end{equation}
where
$$ \omega_L(u,\,F)=\sum_{k=1}^\infty c_k[F^{(k-1)}(0)+uF^{(k-2)}(0)+\ldots+u^{k-1}F(0)]. $$
The series (1) is, in general, divergent. In particular, the series (1) can converge absolutely and uniformly throughout the plane, but not to the function $F(z)$. In the present paper a method is indicated for the reconstruction of the function $F(z)$ from the known coefficients $A_n$ ($n=1,2,\dots$) of (1).
Bibliography: 6 titles.
Received: 20.05.1969
Russian version:
Matematicheskii Sbornik. Novaya Seriya, 1970, Volume 82(124), Number 4(8), Pages 574–584
Bibliographic databases:
UDC: 517.53
MSC: 11M41, 30C15, 40A05
Language: English
Original paper language: Russian
Citation: V. I. Shevtsov, “On the reconstruction of a function from the known coefficients of the corresponding Dirichlet series”, Mat. Sb. (N.S.), 82(124):4(8) (1970), 574–584; Math. USSR-Sb., 11:4 (1970), 529–538
Citation in format AMSBIB
\Bibitem{She70}
\by V.~I.~Shevtsov
\paper On~the reconstruction of a~function from the known coefficients of the corresponding Dirichlet series
\jour Mat. Sb. (N.S.)
\yr 1970
\vol 82(124)
\issue 4(8)
\pages 574--584
\mathnet{http://mi.mathnet.ru/sm3468}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=279284}
\zmath{https://zbmath.org/?q=an:0201.08901}
\transl
\jour Math. USSR-Sb.
\yr 1970
\vol 11
\issue 4
\pages 529--538
\crossref{https://doi.org/10.1070/SM1970v011n04ABEH002074}
Linking options:
  • https://www.mathnet.ru/eng/sm3468
  • https://doi.org/10.1070/SM1970v011n04ABEH002074
  • https://www.mathnet.ru/eng/sm/v124/i4/p574
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:310
    Russian version PDF:87
    English version PDF:16
    References:54
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024