Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1970, Volume 11, Issue 3, Pages 327–338
DOI: https://doi.org/10.1070/SM1970v011n03ABEH002072
(Mi sm3455)
 

This article is cited in 1 scientific paper (total in 1 paper)

An asymptotic formula for the number of solutions of a Diophantine equation

M. I. Israilov
References:
Abstract: Suppose that $k$, $s$, $m_1,\dots,m_k$, $m_1',\dots,m_s'$ are fixed positive integers, $m$ is a fixed integer, $p$ is an increasing positive integer, and suppose that a sequence of integers $\{n_k\}$ satisfies the following conditions: 1) $n_{k+1}\geqslant n_k(1+k^{-1/2+\varepsilon})$ , where $\varepsilon>0$ is arbitrarily small; 2) for fixed $m,n,a,B$, the number of solutions of the Diophantine equation
$$ mn_{x+a}-nn_x=B $$
in $x$ in the half-open interval $[0,p)$ does not exceed some constant $q$ which does not depend on $m,n,a,B$.
Under these assumptions, an asymptotic formula with remainder term is derived for the number of solutions of the Diophantine equation
$$ m_1n_{x_1}+\dots+m_kn_{x_k}=m_1'n_{y_1}+\dots+m_s'n_{y_s}+m $$
in integers $0\leqslant x_1,\dots,x_k$; $y_1,\dots,y_s<p$.
The results obtained extend and refine several results obtained by other authors.
Bibliography: 7 titles.
Received: 30.06.1969
Russian version:
Matematicheskii Sbornik. Novaya Seriya, 1970, Volume 82(124), Number 3(7), Pages 360–370
Bibliographic databases:
UDC: 511.222
MSC: 11D75, 26B35, 11Bxx
Language: English
Original paper language: Russian
Citation: M. I. Israilov, “An asymptotic formula for the number of solutions of a Diophantine equation”, Mat. Sb. (N.S.), 82(124):3(7) (1970), 360–370; Math. USSR-Sb., 11:3 (1970), 327–338
Citation in format AMSBIB
\Bibitem{Isr70}
\by M.~I.~Israilov
\paper An~asymptotic formula for the number of solutions of a~Diophantine equation
\jour Mat. Sb. (N.S.)
\yr 1970
\vol 82(124)
\issue 3(7)
\pages 360--370
\mathnet{http://mi.mathnet.ru/sm3455}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=323714}
\zmath{https://zbmath.org/?q=an:0211.37503|0215.34603}
\transl
\jour Math. USSR-Sb.
\yr 1970
\vol 11
\issue 3
\pages 327--338
\crossref{https://doi.org/10.1070/SM1970v011n03ABEH002072}
Linking options:
  • https://www.mathnet.ru/eng/sm3455
  • https://doi.org/10.1070/SM1970v011n03ABEH002072
  • https://www.mathnet.ru/eng/sm/v124/i3/p360
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:302
    Russian version PDF:98
    English version PDF:10
    References:48
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024