Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1973, Volume 21, Issue 3, Pages 467–484
DOI: https://doi.org/10.1070/SM1973v021n03ABEH002029
(Mi sm3418)
 

This article is cited in 1 scientific paper (total in 1 paper)

Maximum height of arbitrary classes of $(0,1)$-matrices and some of its applications

V. E. Tarakanov
References:
Abstract: An upper estimate obtained earlier by the author for the maximum height $\overline\varepsilon$ of certain $(0,1)$-matrices (RZhMat., 1968, 8V222) is generalized to arbitrary classes of matrices. It is shown that under certain natural conditions $\overline\varepsilon/N\leqslant\ln n/n+O(1/n)$, $n\to\infty$, where $N$ is the number of columns in the matrix and $n$ is the maximum number of ones in a column. Let $\overline\varepsilon(k,n,N)$ be the maximum height of the class of matrices with $N$ columns, $k$ ones in each row and $n$ ones in each column. It is proved that $\overline\varepsilon(n,n,N)\geqslant2\bigl[\frac N{n+1}\bigr]$, $\overline\varepsilon(2,3,N)=\bigl[\frac35N\bigr]$, $\overlinevarepsilon(2,n,N)=\bigl[\frac23N\bigr]$ ($n$ even); $\bigl[\frac35N\bigr]\leqslant\overline\varepsilon(2,n,N)\leqslant\bigl[\frac{2n-1}{3n-1}N\bigr]$ ($n$ odd); from this follows estimates for some constants in graph theory.
Bibliography: 9 titles.
Received: 28.03.1973
Russian version:
Matematicheskii Sbornik. Novaya Seriya, 1973, Volume 92(134), Number 3(11), Pages 472–490
Bibliographic databases:
Document Type: Article
UDC: 512.831
MSC: Primary 05B20; Secondary 90C05, 05B25, 05C99
Language: English
Original paper language: Russian
Citation: V. E. Tarakanov, “Maximum height of arbitrary classes of $(0,1)$-matrices and some of its applications”, Mat. Sb. (N.S.), 92(134):3(11) (1973), 472–490; Math. USSR-Sb., 21:3 (1973), 467–484
Citation in format AMSBIB
\Bibitem{Tar73}
\by V.~E.~Tarakanov
\paper Maximum height of~arbitrary classes of $(0,1)$-matrices and some of its applications
\jour Mat. Sb. (N.S.)
\yr 1973
\vol 92(134)
\issue 3(11)
\pages 472--490
\mathnet{http://mi.mathnet.ru/sm3418}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=337656}
\zmath{https://zbmath.org/?q=an:0296.15010}
\transl
\jour Math. USSR-Sb.
\yr 1973
\vol 21
\issue 3
\pages 467--484
\crossref{https://doi.org/10.1070/SM1973v021n03ABEH002029}
Linking options:
  • https://www.mathnet.ru/eng/sm3418
  • https://doi.org/10.1070/SM1973v021n03ABEH002029
  • https://www.mathnet.ru/eng/sm/v134/i3/p472
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:270
    Russian version PDF:96
    English version PDF:14
    References:50
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024