Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1975, Volume 25, Issue 4, Pages 549–557
DOI: https://doi.org/10.1070/SM1975v025n04ABEH002462
(Mi sm3410)
 

This article is cited in 7 scientific papers (total in 7 papers)

On the connection of the eigenvalues of Hecke operators and the Fourier coefficients of eigenfunctions for Siegel's modular forms of genus $n$

N. A. Zharkovskaya
References:
Abstract: Let $f(z)=\sum_{N\geqslant0}a(N)\exp2\pi i\sigma(NZ)$ be Siegel's modular form of genus $n$ which is an eigenfunction for all operators in the $p$-component of a Hecke ring; in particular, $T_{p^\delta}f(Z)=\lambda_f(p^\delta)f(Z)$. This paper examines the series $\sum_{\delta=0}^\infty a(p^\delta N)t^\delta$ ($p$ does not divide $N$). It is proved that each such series is a rational function, where the degree of the numerator of this function does not exceed $2^n-2$ and the denominator coincides with the denominator of the series $\sum_{\delta=0}^\infty \lambda_f(p^\delta)t^\delta$.
Bibliography: 6 titles.
Received: 15.07.1974
Russian version:
Matematicheskii Sbornik. Novaya Seriya, 1975, Volume 96(138), Number 4, Pages 584–593
Bibliographic databases:
UDC: 517.863
MSC: 10D20, 42A16
Language: English
Original paper language: Russian
Citation: N. A. Zharkovskaya, “On the connection of the eigenvalues of Hecke operators and the Fourier coefficients of eigenfunctions for Siegel's modular forms of genus $n$”, Mat. Sb. (N.S.), 96(138):4 (1975), 584–593; Math. USSR-Sb., 25:4 (1975), 549–557
Citation in format AMSBIB
\Bibitem{Zha75}
\by N.~A.~Zharkovskaya
\paper On~the connection of the eigenvalues of~Hecke operators and the Fourier coefficients of eigenfunctions for Siegel's modular forms of genus~$n$
\jour Mat. Sb. (N.S.)
\yr 1975
\vol 96(138)
\issue 4
\pages 584--593
\mathnet{http://mi.mathnet.ru/sm3410}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=379383}
\zmath{https://zbmath.org/?q=an:0313.10028}
\transl
\jour Math. USSR-Sb.
\yr 1975
\vol 25
\issue 4
\pages 549--557
\crossref{https://doi.org/10.1070/SM1975v025n04ABEH002462}
Linking options:
  • https://www.mathnet.ru/eng/sm3410
  • https://doi.org/10.1070/SM1975v025n04ABEH002462
  • https://www.mathnet.ru/eng/sm/v138/i4/p584
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:393
    Russian version PDF:82
    English version PDF:7
    References:54
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024