|
This article is cited in 2 scientific papers (total in 2 papers)
On an estimate for a function represented by a Dirichlet series
Z. Sh. Karimov
Abstract:
The article considers the series
$$
f(z)=\sum_{k=1}^\infty a_ke^{\lambda_kz},\qquad0<\lambda_k\uparrow\infty,\quad\sum_{k=1}^\infty\lambda_k^{-1}<\infty,
$$
convergent in the whole plane.
Theorem 1. {\it Let $|f(x)|<H(x),$ $-\infty<x<\infty,$ where $0<H(x)\uparrow\infty$. For given $\varepsilon>0$ and $h>0$ there exists a constant $A$, not depending on $f(z)$ and $H(x)$ such that $|f(z)|<AH(x+\varepsilon),$ $x=\operatorname{Re}z,$ $|y|<h$.}
Theorem 2. {\it If in addition
$$
\delta=\varlimsup_{k\to\infty}\frac1{\lambda_k}\ln\biggl|\frac1{L'(\lambda_k)}\biggr|<\infty,\qquad L(\lambda)=\prod_{k=1}^\infty\biggl(1-\frac\lambda{\lambda_k}\biggr),
$$
then for arbitrary $z$ we have $|f(z)|<AH(x+\delta+\varepsilon),$ $x=\operatorname{Re}z$.}
The quantity $\delta$ cannot be replaced by a smaller one. These results strengthen corresponding results due to Gaier (RZhMat., 1967, 10B155) and Anderson and Binmore (RZhMat., 1972, 7B1115).
Bibliography: 7 titles.
Received: 05.07.1974
Citation:
Z. Sh. Karimov, “On an estimate for a function represented by a Dirichlet series”, Mat. Sb. (N.S.), 96(138):4 (1975), 560–567; Math. USSR-Sb., 25:4 (1975), 525–532
Linking options:
https://www.mathnet.ru/eng/sm3408https://doi.org/10.1070/SM1975v025n04ABEH002460 https://www.mathnet.ru/eng/sm/v138/i4/p560
|
Statistics & downloads: |
Abstract page: | 226 | Russian version PDF: | 73 | English version PDF: | 26 | References: | 41 |
|