Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1975, Volume 25, Issue 4, Pages 525–532
DOI: https://doi.org/10.1070/SM1975v025n04ABEH002460
(Mi sm3408)
 

This article is cited in 2 scientific papers (total in 2 papers)

On an estimate for a function represented by a Dirichlet series

Z. Sh. Karimov
References:
Abstract: The article considers the series
$$ f(z)=\sum_{k=1}^\infty a_ke^{\lambda_kz},\qquad0<\lambda_k\uparrow\infty,\quad\sum_{k=1}^\infty\lambda_k^{-1}<\infty, $$
convergent in the whole plane.
Theorem 1. {\it Let $|f(x)|<H(x),$ $-\infty<x<\infty,$ where $0<H(x)\uparrow\infty$. For given $\varepsilon>0$ and $h>0$ there exists a constant $A$, not depending on $f(z)$ and $H(x)$ such that $|f(z)|<AH(x+\varepsilon),$ $x=\operatorname{Re}z,$ $|y|<h$.}
Theorem 2. {\it If in addition
$$ \delta=\varlimsup_{k\to\infty}\frac1{\lambda_k}\ln\biggl|\frac1{L'(\lambda_k)}\biggr|<\infty,\qquad L(\lambda)=\prod_{k=1}^\infty\biggl(1-\frac\lambda{\lambda_k}\biggr), $$
then for arbitrary $z$ we have $|f(z)|<AH(x+\delta+\varepsilon),$ $x=\operatorname{Re}z$.}
The quantity $\delta$ cannot be replaced by a smaller one. These results strengthen corresponding results due to Gaier (RZhMat., 1967, 10B155) and Anderson and Binmore (RZhMat., 1972, 7B1115).
Bibliography: 7 titles.
Received: 05.07.1974
Russian version:
Matematicheskii Sbornik. Novaya Seriya, 1975, Volume 96(138), Number 4, Pages 560–567
Bibliographic databases:
UDC: 517.535.4
MSC: 30A16, 30A64
Language: English
Original paper language: Russian
Citation: Z. Sh. Karimov, “On an estimate for a function represented by a Dirichlet series”, Mat. Sb. (N.S.), 96(138):4 (1975), 560–567; Math. USSR-Sb., 25:4 (1975), 525–532
Citation in format AMSBIB
\Bibitem{Kar75}
\by Z.~Sh.~Karimov
\paper On~an estimate for a~function represented by a~Dirichlet series
\jour Mat. Sb. (N.S.)
\yr 1975
\vol 96(138)
\issue 4
\pages 560--567
\mathnet{http://mi.mathnet.ru/sm3408}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=385092}
\zmath{https://zbmath.org/?q=an:0316.30018}
\transl
\jour Math. USSR-Sb.
\yr 1975
\vol 25
\issue 4
\pages 525--532
\crossref{https://doi.org/10.1070/SM1975v025n04ABEH002460}
Linking options:
  • https://www.mathnet.ru/eng/sm3408
  • https://doi.org/10.1070/SM1975v025n04ABEH002460
  • https://www.mathnet.ru/eng/sm/v138/i4/p560
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:226
    Russian version PDF:73
    English version PDF:26
    References:41
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024