Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 1998, Volume 189, Issue 8, Pages 1179–1203
DOI: https://doi.org/10.1070/sm1998v189n08ABEH000340
(Mi sm340)
 

This article is cited in 8 scientific papers (total in 8 papers)

Lipschitz continuations of linearly bounded functions

V. A. Milman

Institute of Technical Cybernetics, National Academy of Sciences of Belarus
References:
Abstract: The problem of the continuation of a real-valued function from a subset YY of a metric space (X,d) to the whole of the space is considered. A well-known result of McShane enables one to extend a uniformly continuous function preserving its modulus of continuity. However, some natural questions remain unanswered in the process. A new scheme for the extension of a broad class of functions, including bounded and Lipschitz functions, is proposed. Several properties of these extensions, useful in applications, are proved. They include the preservation of constraints on the increments of a function defined in terms of quasiconcave majorants. This result enables one to refine and generalize well-known results on the problem of the traces of functions with bounded gradient. The extension in question is used in two problems on function approximation. In particular, a direct proof of the density of the class Lip(X) in lip(X,ω) is given.
Received: 19.05.1997
Bibliographic databases:
UDC: 517.5
MSC: 54E35, 26E99
Language: English
Original paper language: Russian
Citation: V. A. Milman, “Lipschitz continuations of linearly bounded functions”, Sb. Math., 189:8 (1998), 1179–1203
Citation in format AMSBIB
\Bibitem{Mil98}
\by V.~A.~Milman
\paper Lipschitz continuations of linearly bounded functions
\jour Sb. Math.
\yr 1998
\vol 189
\issue 8
\pages 1179--1203
\mathnet{http://mi.mathnet.ru/eng/sm340}
\crossref{https://doi.org/10.1070/sm1998v189n08ABEH000340}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1669631}
\zmath{https://zbmath.org/?q=an:0914.54010}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000077042100012}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0032220871}
Linking options:
  • https://www.mathnet.ru/eng/sm340
  • https://doi.org/10.1070/sm1998v189n08ABEH000340
  • https://www.mathnet.ru/eng/sm/v189/i8/p67
  • This publication is cited in the following 8 articles:
    1. Roger Arnau, Jose M. Calabuig, Enrique A. Sánchez Pérez, “Measure-Based Extension of Continuous Functions and p-Average-Slope-Minimizing Regression”, Axioms, 12:4 (2023), 359  crossref
    2. Di Marino S., Gigli N., Pratelli A., “Global Lipschitz Extension Preserving Local Constants”, Rend. Lincei-Mat. Appl., 31:4 (2020), 757–765  crossref  isi
    3. Cobzas S. Miculescu R. Nicolae A., “Lipschitz Functions Preface”: Cobzas, S Miculescu, R Nicolae, A, Lipschitz Functions, Lect. Notes Math., Lecture Notes in Mathematics, 2241, Springer International Publishing Ag, 2019, V+  mathscinet  isi
    4. Ştefan Cobzaş, Radu Miculescu, Adriana Nicolae, Lecture Notes in Mathematics, 2241, Lipschitz Functions, 2019, 211  crossref
    5. Crandall, MG, “A visit with the infinity-Laplace equation”, Calculus of Variations and Non-Linear Partial Differential Equations, 1927 (2008), 75  crossref  mathscinet  zmath  isi  scopus  scopus  scopus
    6. Aronsson, G, “A tour of the theory of absolutely minimizing functions”, Bulletin of the American Mathematical Society, 41:4 (2004), 439  crossref  mathscinet  zmath  isi  scopus  scopus  scopus
    7. Bogachev, VI, “Extensions of H-Lipschitzian mappings with infinite-dimensional range”, Infinite Dimensional Analysis Quantum Probability and Related Topics, 2:3 (1999), 461  crossref  mathscinet  zmath  isi  scopus  scopus  scopus
    8. V. A. Milman, “Absolutely minimal extensions of functions on metric spaces”, Sb. Math., 190:6 (1999), 859–885  mathnet  crossref  crossref  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:419
    Russian version PDF:221
    English version PDF:42
    References:75
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025