Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1970, Volume 10, Issue 4, Pages 475–502
DOI: https://doi.org/10.1070/SM1970v010n04ABEH002160
(Mi sm3384)
 

This article is cited in 9 scientific papers (total in 9 papers)

Stability of the problem of recovering the Sturm–Liouville operator from the spectral function

V. A. Marchenko, K. V. Maslov
References:
Abstract: We consider a differential operator $\mathscr L=(h,q(x))$ generated by a Sturm-Liouville operation $l[y]=-y''+q(x)y$ on the linear manifold of finite twice-differentiable functions $y(x)$ satisfying the boundary condition $y'(0)-hy(0)=0$. Let $\rho(\mu)$ be the spectral function of this operator. From $\rho(\mu)$, as is well known, we can recover the operator $\mathscr L$, i.e. the number $h$ and the function $q(x)$. Let $V_\alpha^A$ be the set of operators $\mathscr L$ for which
$$ |h|\leqslant A,\qquad\int_0^x|q(t)|\,dt\leqslant\alpha(x)\quad(x<0<\infty). $$

We now investigate how much information about the operator $\mathscr L\in V_\alpha^A$ can be obtained if its spectral function $\rho(\mu)$ is known only for values of $\mu$ on a finite interval.
In the present article we obtain estimates for the difference in the potentials $q_1(x)-q_2(x)$, in the boundary parameters $h_1-h_2$ and in the solutions of the corresponding differential equations under the condition that the spectral functions of the two operators in $V_\alpha^A$ coincide on a finite interval.
Bibliography: 7 titles.
Received: 10.10.1969
Bibliographic databases:
UDC: 517.43
Language: English
Original paper language: Russian
Citation: V. A. Marchenko, K. V. Maslov, “Stability of the problem of recovering the Sturm–Liouville operator from the spectral function”, Math. USSR-Sb., 10:4 (1970), 475–502
Citation in format AMSBIB
\Bibitem{MarMas70}
\by V.~A.~Marchenko, K.~V.~Maslov
\paper Stability of the problem of recovering the Sturm--Liouville operator from the spectral function
\jour Math. USSR-Sb.
\yr 1970
\vol 10
\issue 4
\pages 475--502
\mathnet{http://mi.mathnet.ru//eng/sm3384}
\crossref{https://doi.org/10.1070/SM1970v010n04ABEH002160}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=264154}
\zmath{https://zbmath.org/?q=an:0195.43301|0216.17102}
Linking options:
  • https://www.mathnet.ru/eng/sm3384
  • https://doi.org/10.1070/SM1970v010n04ABEH002160
  • https://www.mathnet.ru/eng/sm/v123/i4/p525
  • This publication is cited in the following 9 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:543
    Russian version PDF:189
    English version PDF:18
    References:88
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024