Abstract:
It is shown that in a neighborhood of a trajectory which is doubly asymptotic to a rough state of equilibrium of saddle-focus type, under addition assumptions on the dynamical system, there exists a subsystem whose trajectories are in one-to-one correspondence with a set which is the quotient space of a topological Bernoulli process with an infinite set of symbols.
Bibliography: 10 titles.
Citation:
L. P. Shilnikov, “A contribution to the problem of the structure of an extended neighborhood of a rough equilibrium state of saddle-focus type”, Math. USSR-Sb., 10:1 (1970), 91–102
\Bibitem{Shi70}
\by L.~P.~Shilnikov
\paper A~contribution to the problem of the structure of an extended neighborhood of a~rough equilibrium state of saddle-focus type
\jour Math. USSR-Sb.
\yr 1970
\vol 10
\issue 1
\pages 91--102
\mathnet{http://mi.mathnet.ru/eng/sm3363}
\crossref{https://doi.org/10.1070/SM1970v010n01ABEH001588}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=259275}
\zmath{https://zbmath.org/?q=an:0193.05301|0216.11201}
Linking options:
https://www.mathnet.ru/eng/sm3363
https://doi.org/10.1070/SM1970v010n01ABEH001588
https://www.mathnet.ru/eng/sm/v123/i1/p92
This publication is cited in the following 392 articles:
Sergey V. Gonchenko, Lev M. Lerman, Andrey L. Shilnikov, Dmitry V. Turaev, “Scientific Heritage of L.P. Shilnikov. Part II. Homoclinic Chaos”, Regul. Chaotic Dyn., 30:2 (2025), 155–173
Dmitry Turaev, “A Geometric Model for Pseudohyperbolic Shilnikov Attractors”, Regul. Chaotic Dyn., 30:2 (2025), 174–187
Nikolay E. Kulagin, Lev M. Lerman, Konstantin N. Trifonov, “Twin Heteroclinic Connections of Reversible Systems”, Regul. Chaotic Dyn., 29:1 (2024), 40–64
P.S. Casas, F. Drubi, S. Ibáñez, “Invariant manifolds in a reversible Hamiltonian system: The tentacle-like geometry”, Communications in Nonlinear Science and Numerical Simulation, 138 (2024), 108189
Chayu Yang, Bo Deng, “Dynamics of Infectious Diseases Incorporating a Testing Compartment”, Mathematics, 12:12 (2024), 1797
Jinkai Jiang, Zhengdong Du, “Chaotic and strange nonchaotic attractors induced by homoclinic bifurcations in a Duffing-type inverted pendulum under periodic and quasi-periodic excitations”, Nonlinear Dyn, 2024
N. E. Kulagin, L. M. Lerman, “Prostranstvennaya dinamika v semeistve differentsialnykh uravnenii shestogo poryadka iz teorii strukturoobrazovaniya”, Izvestiya vuzov. PND, 32:6 (2024), 878–896
José Angel Rodríguez, “Emergence of Strange Attractors from Singularities”, Regul. Chaotic Dyn., 28:4-5 (2023), 468–497
Andrey Pototsky, Ivan S. Maksymov, “Nonlinear periodic and solitary rolling waves in falling two-layer viscous liquid films”, Phys. Rev. Fluids, 8:6 (2023)
F. Drubi, A. Mayora-Cebollero, C. Mayora-Cebollero, S. Ibáñez, J.A. Jover-Galtier, Á. Lozano, L. Pérez, R. Barrio, “Connecting chaotic regions in the Coupled Brusselator System”, Chaos, Solitons & Fractals, 169 (2023), 113240
Rodrigues D. Dikandé Bitha, Andrus Giraldo, Neil G. R. Broderick, Bernd Krauskopf, “Bifurcation analysis of complex switching oscillations in a Kerr microring resonator”, Phys. Rev. E, 108:6 (2023)
Edgardo Villar-Sepúlveda, Pablo Aguirre, Víctor F. Breña-Medina, “A Case Study of Multiple Wave Solutions in a Reaction-Diffusion System Using Invariant Manifolds and Global Bifurcations”, SIAM J. Appl. Dyn. Syst., 22:2 (2023), 918
Qigui Yang, Yousu Huang, “Chaotic Dynamics Arising from Sliding Heteroclinic Cycles in 3D Filippov Systems”, Int. J. Bifurcation Chaos, 33:01 (2023)
Xu Zhang, Guanrong Chen, “A Geometric Criterion for the Existence of Chaos Based on Periodic Orbits in Continuous-Time Autonomous Systems”, J Dyn Control Syst, 29:1 (2023), 71
Julius Rhoan T. Lustro, Yudai Shimizu, Genta Kawahara, “Homoclinic bifurcation and switching of edge state in plane Couette flow”, Chaos: An Interdisciplinary Journal of Nonlinear Science, 33:6 (2023)
Xuan Wang, Yiran Feng, Yixin Chen, “A New Four-Dimensional Chaotic System and its Circuit Implementation”, Front. Phys., 10 (2022)
Kai Lu, Wenjing Xu, Yongchang Wei, Wei Xu, “Heteroclinic Cycles Generated by Piecewise Affine Systems in ℝn”, Int. J. Bifurcation Chaos, 32:10 (2022)
Alexandre A. P. Rodrigues, “Unfolding a Bykov Attractor: From an Attracting Torus to Strange Attractors”, J Dyn Diff Equat, 34:2 (2022), 1643
Alexandre A. Rodrigues, “Rank-one strange attractors versus heteroclinic tangles”, CPAA, 21:9 (2022), 3213