Abstract:
A class of so-called special polyhedra is defined for each n>1. The following theorems are proved:
1. Every piecewise linear manifold Mn+1 with boundary can be collapsed to some n-dimensional special polyhedron.
2. The manifold Mn+1 is uniquely determined by this special polyhedron.
3. If n⩾3, then any special polyhedron can be thickened to an (n+1)-dimensional manifold.
The author also gives applications of the results obtained to a series of questions connected with the Zeeman conjecture about the collapsibility of P2×I, where P2 is a contractible polyhedron.
Figures: 4.
Bibliography: 6 titles.
\Bibitem{Mat73}
\by S.~V.~Matveev
\paper Special spines of piecewise linear manifolds
\jour Math. USSR-Sb.
\yr 1973
\vol 21
\issue 2
\pages 279--291
\mathnet{http://mi.mathnet.ru/eng/sm3348}
\crossref{https://doi.org/10.1070/SM1973v021n02ABEH002017}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=343285}
\zmath{https://zbmath.org/?q=an:0286.57011}
Linking options:
https://www.mathnet.ru/eng/sm3348
https://doi.org/10.1070/SM1973v021n02ABEH002017
https://www.mathnet.ru/eng/sm/v134/i2/p282
This publication is cited in the following 9 articles:
Antonio Lerario, Chiara Meroni, Daniele Zuddas, “On smooth functions with two critical values”, Rev Mat Complut, 2024
V. M. Buchstaber, V. A. Vassiliev, A. Yu. Vesnin, I. A. Dynnikov, Yu. G. Reshetnyak, A. B. Sossinsky, I. A. Taimanov, V. G. Turaev, A. T. Fomenko, E. A. Fominykh, A. V. Chernavsky, “Sergei Vladimirovich Matveev (on his 70th birthday)”, Russian Math. Surveys, 73:4 (2018), 737–746
M. A. Ovchinnikov, “Representation of homeotopies of a torus by simple polyhedra with a boundary”, Math. Notes, 66:4 (1999), 436–441
M. A. Ovchinnikov, “Spetsialnyi spain linzy tipa dlinnaya vosmerka
i linza kak prostranstvo dvulistnogo nakrytiya 3-sfery,
razvetvlennogo vdol dvumostnogo zatsepeleniya”, Vestnik ChelGU, 1999, no. 4, 145–154
S. V. Matveev, “Classification of sufficiently large three-dimensional manifolds”, Russian Math. Surveys, 52:5 (1997), 1029–1055
Riccardo Benedetti, Carlo Petronio, “A finite graphic calculus for 3-manifolds”, manuscripta math, 88:1 (1995), 291
Matveev S., “Complexity Theory of 3-Dimensional Manifolds”, Acta Appl. Math., 19:2 (1990), 101–130
S. V. Matveev, “Transformations of special spines and the Zeeman conjecture”, Math. USSR-Izv., 31:2 (1988), 423–434
D. Gillman, D. Rolfsen, “The Zeeman conjecture for standard spines is equivalent to the Poincaré conjecture”, Topology, 22:3 (1983), 315