Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1971, Volume 15, Issue 4, Pages 577–606
DOI: https://doi.org/10.1070/SM1971v015n04ABEH001564
(Mi sm3319)
 

This article is cited in 57 scientific papers (total in 57 papers)

Wick and anti-Wick operator symbols

F. A. Berezin
References:
Abstract: In this paper Wick and anti-Wick operator symbols are studied in connection with expansion into normal and antinormal series in terms of generation and annihilation operators. By the aid of the Wick $A(\bar z,z)$ and anti-Wick $\overset0A(z,\bar z)$ symbol of the operator $\widehat A$ a series of characteristic spectral properties are identified for $\widehat A$. In particular, results are presented concerning necessary and sufficient conditions (separately) for $\widehat A$ to belong to the classes of bounded operators, completely continuous operators and nuclear operators, and also concerning bounds on the spectrum of $\widehat A$, and the asymptotic behavior of the number $N(E)$ of eigenvalues below $E$; and for positive selfadjoint operators a bound is obtained for the trace of the Green function:
$$ \int\exp\bigl[-tA(\bar z,z)\bigr]\Pi\,dz\,d\bar z\leqslant\operatorname{sp}\exp(-t\widehat A)\leqslant\int\exp\bigl[-tA(z,\bar z)\bigr]\Pi\,dz\,d\bar z. $$

Bibliography: 14 titles.
Received: 23.12.1970
Russian version:
Matematicheskii Sbornik. Novaya Seriya, 1971, Volume 86(128), Number 4(12), Pages 578–610
Bibliographic databases:
UDC: 517.43+513.882
MSC: 81A18
Language: English
Original paper language: Russian
Citation: F. A. Berezin, “Wick and anti-Wick operator symbols”, Mat. Sb. (N.S.), 86(128):4(12) (1971), 578–610; Math. USSR-Sb., 15:4 (1971), 577–606
Citation in format AMSBIB
\Bibitem{Ber71}
\by F.~A.~Berezin
\paper Wick and anti-Wick operator symbols
\jour Mat. Sb. (N.S.)
\yr 1971
\vol 86(128)
\issue 4(12)
\pages 578--610
\mathnet{http://mi.mathnet.ru/sm3319}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=291839}
\zmath{https://zbmath.org/?q=an:0247.47018}
\transl
\jour Math. USSR-Sb.
\yr 1971
\vol 15
\issue 4
\pages 577--606
\crossref{https://doi.org/10.1070/SM1971v015n04ABEH001564}
Linking options:
  • https://www.mathnet.ru/eng/sm3319
  • https://doi.org/10.1070/SM1971v015n04ABEH001564
  • https://www.mathnet.ru/eng/sm/v128/i4/p578
  • This publication is cited in the following 57 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:918
    Russian version PDF:361
    English version PDF:41
    References:82
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024