|
This article is cited in 4 scientific papers (total in 4 papers)
On uniqueness classes for degenerating parabolic equations
I. M. Sonin
Abstract:
We study the uniqueness classes of a generalized solution of the Cauchy problem
\begin{equation}
u_t=\frac12\sum_{i,j=1}^na_{ij}(x)u_{x_ix_j}+\sum_{i=1}^na_i(x)u_{x_i}\equiv Lu,\quad
u(0,x)=\varphi(x),\quad x\in\mathbf R^n,\ t\in[0,T],
\end{equation}
when the matrix $\bigl\{a_{ij}(x)\bigr\}$ is degenerate. A generalized solution is introduced with the help of an infinitesimal operator of a Markov process connected with the operator in (1). In the proof of the theorems we use probabilistic characteristics of this process.
Bibliography: 11 titles.
Received: 26.12.1969
Citation:
I. M. Sonin, “On uniqueness classes for degenerating parabolic equations”, Math. USSR-Sb., 14:4 (1971), 453–469
Linking options:
https://www.mathnet.ru/eng/sm3266https://doi.org/10.1070/SM1971v014n04ABEH002815 https://www.mathnet.ru/eng/sm/v127/i4/p459
|
|