Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1972, Volume 18, Issue 4, Pages 589–602
DOI: https://doi.org/10.1070/SM1972v018n04ABEH001862
(Mi sm3249)
 

This article is cited in 6 scientific papers (total in 7 papers)

On representing entire functions of several variables by Dirichlet series

A. F. Leont'ev
References:
Abstract: Let $F(z_1,z_2)$ be an entire function of two complex variables. Let us take the proximate order
$$ \rho(r)=1+\frac{\psi(\ln r)}{\ln r},\quad\psi(u)\uparrow\infty,\quad\underset{x\to\infty}{\psi'(x)}\downarrow0,\quad\frac{\psi(x)}x\to0, $$
and then define positive numbers $\mu_k$ ($k\geqslant1$) so that $\mu_n^{s(\mu_n)}=n/\tau$, $0<\tau<\infty$. Let us choose an integer $m>2$ and form the numbers $\mu_ne^{2\pi ik/m}$ ($k=0,1,\dots,m-1$; $n=1,2,\dots$). Let $\lambda_k$ ($k\geqslant1$) be arranged these numbers in the order of decreasing modulus. For a proper choice of the function $\psi(x)$ and the number $\tau$, the representation
$$ F(z_1,z_2)=\sum_{n,m=1}^\infty a_{n,m}e^{\lambda_nz_1+\lambda_mz_2} $$
holds in the whole space $\mathbf C^2$.
Bibliography: 6 titles.
Received: 29.03.1972
Bibliographic databases:
UDC: 517.55
MSC: 32A15, 32A05
Language: English
Original paper language: Russian
Citation: A. F. Leont'ev, “On representing entire functions of several variables by Dirichlet series”, Math. USSR-Sb., 18:4 (1972), 589–602
Citation in format AMSBIB
\Bibitem{Leo72}
\by A.~F.~Leont'ev
\paper On~representing entire functions of several variables by Dirichlet series
\jour Math. USSR-Sb.
\yr 1972
\vol 18
\issue 4
\pages 589--602
\mathnet{http://mi.mathnet.ru//eng/sm3249}
\crossref{https://doi.org/10.1070/SM1972v018n04ABEH001862}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=335844}
\zmath{https://zbmath.org/?q=an:0249.32003}
Linking options:
  • https://www.mathnet.ru/eng/sm3249
  • https://doi.org/10.1070/SM1972v018n04ABEH001862
  • https://www.mathnet.ru/eng/sm/v131/i4/p586
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025