Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 1998, Volume 189, Issue 5, Pages 657–682
DOI: https://doi.org/10.1070/sm1998v189n05ABEH000318
(Mi sm318)
 

This article is cited in 2 scientific papers (total in 2 papers)

Generalized localization for the double trigonometric Fourier series and the Walsh–Fourier series of functions in $L\log^+L\log^+\log^+L$

S. K. Bloshanskayaa, I. L. Bloshanskiib, T. Yu. Roslovac

a Moscow Engineering Physics Institute (State University)
b Moscow State Pedagogical University
c Moscow Pedagogical University, Moscow, Russian Federation
References:
Abstract: For an arbitrary open set $\Omega\subset I^2=[0,1)^2$ and an arbitrary function $f\in L\log^+L\log^+\log^+L(I^2)$ such that $f=0$ on $\Omega$ the double Fourier series of $f$ with respect to the trigonometric system $\Psi=\mathscr E$ and the Walsh–Paley system $\Psi=W$ is shown to converge to zero (over rectangles) almost everywhere on $\Omega$. Thus, it is proved that generalized localization almost everywhere holds on arbitrary open subsets of the square $I^2$ for the double trigonometric Fourier series and the Walsh–Fourier series of functions in the class $L\log^+L\log^+\log^+L$ (in the case of summation over rectangles). It is also established that such localization breaks down on arbitrary sets that are not dense in $I^2$, in the classes $\Phi_\Psi(L)(I^2)$ for the orthonormal system $\Psi=\mathscr E$ and an arbitrary function such that $\Phi_{\mathscr E}(u)=o(u\log^+\log^+u)$ as $u\to\infty$ or for $\Phi_W(u)=u(\log^+\log^+u)^{1-\varepsilon}$, $0<\varepsilon<1$.
Received: 04.11.1997
Russian version:
Matematicheskii Sbornik, 1998, Volume 189, Number 5, Pages 21–46
DOI: https://doi.org/10.4213/sm318
Bibliographic databases:
UDC: 517.5
MSC: 42B05
Language: English
Original paper language: Russian
Citation: S. K. Bloshanskaya, I. L. Bloshanskii, T. Yu. Roslova, “Generalized localization for the double trigonometric Fourier series and the Walsh–Fourier series of functions in $L\log^+L\log^+\log^+L$”, Mat. Sb., 189:5 (1998), 21–46; Sb. Math., 189:5 (1998), 657–682
Citation in format AMSBIB
\Bibitem{BloBloRos98}
\by S.~K.~Bloshanskaya, I.~L.~Bloshanskii, T.~Yu.~Roslova
\paper Generalized localization for the double trigonometric Fourier series and the Walsh--Fourier series of functions in $L\log^+L\log^+\log^+L$
\jour Mat. Sb.
\yr 1998
\vol 189
\issue 5
\pages 21--46
\mathnet{http://mi.mathnet.ru/sm318}
\crossref{https://doi.org/10.4213/sm318}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1639169}
\zmath{https://zbmath.org/?q=an:0938.42014}
\transl
\jour Sb. Math.
\yr 1998
\vol 189
\issue 5
\pages 657--682
\crossref{https://doi.org/10.1070/sm1998v189n05ABEH000318}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000075975300002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0032220819}
Linking options:
  • https://www.mathnet.ru/eng/sm318
  • https://doi.org/10.1070/sm1998v189n05ABEH000318
  • https://www.mathnet.ru/eng/sm/v189/i5/p21
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:498
    Russian version PDF:208
    English version PDF:19
    References:65
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024