Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1972, Volume 17, Issue 3, Pages 441–465
DOI: https://doi.org/10.1070/SM1972v017n03ABEH001523
(Mi sm3177)
 

This article is cited in 5 scientific papers (total in 5 papers)

Subsequences of the Fourier sums of functions with a given modulus of continuity

K. I. Oskolkov
References:
Abstract: It is proved that for each modulus of continuity $\omega(\delta)$ in the class $H_\omega$ there exists a function $f$ such that for any increasing sequence $\{n_i\}_{i=1}^\infty$ of natural numbers there is a point $x$ at which
\begin{gather*} \varlimsup_{t\to\infty}\frac{S_{n_i}(f,x)-f(x)}{\omega(n_i^{-1})\log{n_i}}\geqslant A>0,\\ \varliminf_{t\to\infty}\frac{S_{n_i}(f,x)-f(x)}{\omega (n_i^{-1})\log{n_i}} \leqslant-A<0, \end{gather*}
where $A$ is an absolute constant. Also considered is the approximation by sequences of Fourier sums of functions of bounded variation with given modulus of continuity.
Bibliography: 7 titles.
Received: 09.09.1971
Russian version:
Matematicheskii Sbornik. Novaya Seriya, 1972, Volume 88(130), Number 3(7), Pages 447–469
Bibliographic databases:
UDC: 517.5
MSC: Primary 42A20; Secondary 26A15, 26A16, 26A45, 26A86
Language: English
Original paper language: Russian
Citation: K. I. Oskolkov, “Subsequences of the Fourier sums of functions with a given modulus of continuity”, Mat. Sb. (N.S.), 88(130):3(7) (1972), 447–469; Math. USSR-Sb., 17:3 (1972), 441–465
Citation in format AMSBIB
\Bibitem{Osk72}
\by K.~I.~Oskolkov
\paper Subsequences of the Fourier sums of functions with a~given modulus of continuity
\jour Mat. Sb. (N.S.)
\yr 1972
\vol 88(130)
\issue 3(7)
\pages 447--469
\mathnet{http://mi.mathnet.ru/sm3177}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=333549}
\zmath{https://zbmath.org/?q=an:0239.42007}
\transl
\jour Math. USSR-Sb.
\yr 1972
\vol 17
\issue 3
\pages 441--465
\crossref{https://doi.org/10.1070/SM1972v017n03ABEH001523}
Linking options:
  • https://www.mathnet.ru/eng/sm3177
  • https://doi.org/10.1070/SM1972v017n03ABEH001523
  • https://www.mathnet.ru/eng/sm/v130/i3/p447
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:334
    Russian version PDF:112
    English version PDF:10
    References:49
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024