|
This article is cited in 1 scientific paper (total in 1 paper)
Estimates for differential operators with constant coefficients in a half-space
V. G. Maz'ya, I. V. Gel'man
Abstract:
Necessary and sufficient conditions (and also more explicit sufficient conditions) are obtained for the validity of the following estimates for differential operators with constant coefficients in the half-space $\mathbf R_+^n=\{(x,t):x\in\mathbf R^{n-1},\ t\geqslant0\}$:
\begin{gather*}
\|\mathscr R(D)u\|^2\leqslant C\|\mathscr P(D)u\|^2,\qquad
u\in C_0^\infty(\mathbf R_+^n),\quad (\mathscr Q_j(D)u)(x;0)=0\ (j=1,\dots,N),
\\
\|\mathscr R(D)u\|^2\leqslant C\biggl(\|\mathscr P(D)u\|^2+\sum_{j=1}^N\langle\!\langle\mathscr Q_j(D)u\rangle\!\rangle _{s_j}^2\biggr),
\end{gather*}
where ${\|\cdot\|}$ and $\langle\!\langle\,\cdot\,\rangle\!\rangle$
are the norms in $L_2(\mathbf R_+^n)$ and $H_s(\partial\mathbf R_+^n)$,
$$
D=\biggl(\frac1i\,\frac\partial{\partial x_1},\dots,\frac1i\,\frac\partial{\partial x_{n-1}};\frac1i\,\frac\partial{\partial t}\biggr),
$$
and $C_0^\infty(\mathbf R_+^n)$ is the space of restrictions to
$\mathbf R_+^n$ of functions in $C_0^\infty(\mathbf R^n)$.
Bibliography: 18 titles.
Received: 28.01.1974
Citation:
V. G. Maz'ya, I. V. Gel'man, “Estimates for differential operators with constant coefficients in a half-space”, Mat. Sb. (N.S.), 96(138):2 (1975), 240–275; Math. USSR-Sb., 25:2 (1975), 225–258
Linking options:
https://www.mathnet.ru/eng/sm3125https://doi.org/10.1070/SM1975v025n02ABEH002207 https://www.mathnet.ru/eng/sm/v138/i2/p240
|
Statistics & downloads: |
Abstract page: | 289 | Russian version PDF: | 94 | English version PDF: | 8 | References: | 42 |
|