|
This article is cited in 1 scientific paper (total in 1 paper)
An example of an orthonormal system of convergence in $C$ but not in $L^2$
A. M. Olevskii
Abstract:
We prove the following theorem.
Theorem. {\it For any $p_0\in[1,\infty)$ there exists a complete uniformly bounded orthonormal system $\{\varphi_n\}$ having the following properties}:
1) For all $f\in L^p, p>p_0,$ the Fouries series $\sum c_n\varphi_n$ converges to $f$ almost everywhere.
2) {\it There exists an $F\in L^{p_0}$ whose Fourier series diverges almost everywhere.}
Bibliography: 8 titles.
Received: 03.10.1972
Citation:
A. M. Olevskii, “An example of an orthonormal system of convergence in $C$ but not in $L^2$”, Mat. Sb. (N.S.), 91(133):1(5) (1973), 134–141; Math. USSR-Sb., 20:1 (1973), 145–153
Linking options:
https://www.mathnet.ru/eng/sm3108https://doi.org/10.1070/SM1973v020n01ABEH001863 https://www.mathnet.ru/eng/sm/v133/i1/p134
|
Statistics & downloads: |
Abstract page: | 455 | Russian version PDF: | 162 | English version PDF: | 17 | References: | 66 |
|