Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1972, Volume 16, Issue 2, Pages 191–208
DOI: https://doi.org/10.1070/SM1972v016n02ABEH001420
(Mi sm3101)
 

This article is cited in 1 scientific paper (total in 1 paper)

Integral inequalities for conjugate harmonic functions of several variables

A. A. Bonami
References:
Abstract: We say that a harmonic vector $F(x,y)=(u,v_1,\ldots,v_n)$ belongs to the class $S_p$ $(p>0)$ in the half-space $R^n\times(0,+\infty)$ if for any $y_0>0$ there exists a constant $C(y_0,F)$ depending only on $F$ and $y_0$ such that
$$ \int_{R^n}|F(x,y)|^p\,dx\leqslant C(y_0,F),\quad y\geqslant y_0. $$
Let $F\in S^p$ in $R^n\times(0,+\infty)$, $p>\frac{n-1}n$, $a>0$ and $\bigl\{\int_{R^n}|u(x,y)|^p\,dx\bigr\}^{1/p}\leqslant Cy^{-a}$ where $C=\mathrm{const}$. Then for $q\geqslant p$ we have
$$ \biggl\{\int_{R^n}|F(x,y)|^p\,dx\biggr\}^{1/p}\leqslant BCy^{-a-n/p+n/q}, $$
where $B$ depends only on $n$, $p$ and $a$.
Bibliography: 14 titles.
Received: 20.08.1970
Russian version:
Matematicheskii Sbornik. Novaya Seriya, 1972, Volume 87(129), Number 2, Pages 188–203
Bibliographic databases:
UDC: 517.581
MSC: Primary 31B05; Secondary 32A30
Language: English
Original paper language: Russian
Citation: A. A. Bonami, “Integral inequalities for conjugate harmonic functions of several variables”, Mat. Sb. (N.S.), 87(129):2 (1972), 188–203; Math. USSR-Sb., 16:2 (1972), 191–208
Citation in format AMSBIB
\Bibitem{Bon72}
\by A.~A.~Bonami
\paper Integral inequalities for conjugate harmonic functions of several variables
\jour Mat. Sb. (N.S.)
\yr 1972
\vol 87(129)
\issue 2
\pages 188--203
\mathnet{http://mi.mathnet.ru/sm3101}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=299818}
\zmath{https://zbmath.org/?q=an:0249.31007}
\transl
\jour Math. USSR-Sb.
\yr 1972
\vol 16
\issue 2
\pages 191--208
\crossref{https://doi.org/10.1070/SM1972v016n02ABEH001420}
Linking options:
  • https://www.mathnet.ru/eng/sm3101
  • https://doi.org/10.1070/SM1972v016n02ABEH001420
  • https://www.mathnet.ru/eng/sm/v129/i2/p188
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:255
    Russian version PDF:80
    English version PDF:8
    References:61
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024