|
This article is cited in 1 scientific paper (total in 1 paper)
Integral inequalities for conjugate harmonic functions of several variables
A. A. Bonami
Abstract:
We say that a harmonic vector $F(x,y)=(u,v_1,\ldots,v_n)$ belongs to the class $S_p$ $(p>0)$ in the half-space $R^n\times(0,+\infty)$ if for any $y_0>0$ there exists a constant $C(y_0,F)$ depending only on $F$ and $y_0$ such that
$$
\int_{R^n}|F(x,y)|^p\,dx\leqslant C(y_0,F),\quad y\geqslant y_0.
$$
Let $F\in S^p$ in $R^n\times(0,+\infty)$, $p>\frac{n-1}n$, $a>0$ and
$\bigl\{\int_{R^n}|u(x,y)|^p\,dx\bigr\}^{1/p}\leqslant Cy^{-a}$ where $C=\mathrm{const}$. Then for $q\geqslant p$ we have
$$
\biggl\{\int_{R^n}|F(x,y)|^p\,dx\biggr\}^{1/p}\leqslant BCy^{-a-n/p+n/q},
$$
where $B$ depends only on $n$, $p$ and $a$.
Bibliography: 14 titles.
Received: 20.08.1970
Citation:
A. A. Bonami, “Integral inequalities for conjugate harmonic functions of several variables”, Mat. Sb. (N.S.), 87(129):2 (1972), 188–203; Math. USSR-Sb., 16:2 (1972), 191–208
Linking options:
https://www.mathnet.ru/eng/sm3101https://doi.org/10.1070/SM1972v016n02ABEH001420 https://www.mathnet.ru/eng/sm/v129/i2/p188
|
Statistics & downloads: |
Abstract page: | 255 | Russian version PDF: | 80 | English version PDF: | 8 | References: | 61 |
|