|
On completeness of a system of functions that are close to power functions
L. A. Leont'eva
Abstract:
We obtain necessary and sufficient conditions for the completeness of the system $\{f_n(x)=x^{\lambda_n}[1+\varepsilon_n(x)]\}$ in $L_p[0, a]$, where $\varepsilon_n(x)\in L_p[0, a]$, $\varlimsup_{n\to\infty}\frac{\ln m_n}{\lambda_n}<0$, $m_n = \|\varepsilon_n(x)\|_{L_p[0, a]}$, $n=1,2,\dots$; $1<p<\infty$.
Bibliography: 4 titles.
Received: 07.01.1970
Citation:
L. A. Leont'eva, “On completeness of a system of functions that are close to power functions”, Mat. Sb. (N.S.), 84(126):3 (1971), 406–424; Math. USSR-Sb., 13:3 (1971), 400–418
Linking options:
https://www.mathnet.ru/eng/sm3081https://doi.org/10.1070/SM1971v013n03ABEH003690 https://www.mathnet.ru/eng/sm/v126/i3/p406
|
Statistics & downloads: |
Abstract page: | 362 | Russian version PDF: | 108 | English version PDF: | 18 | References: | 58 |
|