Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 1998, Volume 189, Issue 3, Pages 383–397
DOI: https://doi.org/10.1070/sm1998v189n03ABEH000307
(Mi sm307)
 

This article is cited in 3 scientific papers (total in 3 papers)

Parametric oscillations of a singularly perturbed telegraph equation with a pendulum non-linearity

Yu. S. Kolesov

P. G. Demidov Yaroslavl State University
References:
Abstract: The solution of the problem in the title is reduced to an analysis of the question of the number of and stability of equilibrium states of the quasi-normal form of the boundary-value problem under consideration. A mechanism is revealed for the origin of its so-called simple equilibrium states. It is shown that as the coefficient of elasticity decreases, the number of such states increases, and that those of them with the most complex spatial structure are stable.
Received: 21.03.1997
Russian version:
Matematicheskii Sbornik, 1998, Volume 189, Number 3, Pages 69–82
DOI: https://doi.org/10.4213/sm307
Bibliographic databases:
UDC: 517.926
MSC: Primary 35L70, 35B25; Secondary 35L05, 34B15, 34D15
Language: English
Original paper language: Russian
Citation: Yu. S. Kolesov, “Parametric oscillations of a singularly perturbed telegraph equation with a pendulum non-linearity”, Mat. Sb., 189:3 (1998), 69–82; Sb. Math., 189:3 (1998), 383–397
Citation in format AMSBIB
\Bibitem{Kol98}
\by Yu.~S.~Kolesov
\paper Parametric oscillations of a~singularly perturbed telegraph equation with a~pendulum non-linearity
\jour Mat. Sb.
\yr 1998
\vol 189
\issue 3
\pages 69--82
\mathnet{http://mi.mathnet.ru/sm307}
\crossref{https://doi.org/10.4213/sm307}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1617868}
\zmath{https://zbmath.org/?q=an:0920.35096}
\transl
\jour Sb. Math.
\yr 1998
\vol 189
\issue 3
\pages 383--397
\crossref{https://doi.org/10.1070/sm1998v189n03ABEH000307}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000074678200003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0032375855}
Linking options:
  • https://www.mathnet.ru/eng/sm307
  • https://doi.org/10.1070/sm1998v189n03ABEH000307
  • https://www.mathnet.ru/eng/sm/v189/i3/p69
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:369
    Russian version PDF:185
    English version PDF:13
    References:41
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024