Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1972, Volume 16, Issue 1, Pages 60–68
DOI: https://doi.org/10.1070/SM1972v016n01ABEH001349
(Mi sm3035)
 

This article is cited in 3 scientific papers (total in 3 papers)

Cycle breaking in fiberings on analytic curves

Yu. S. Ilyashenko
References:
Abstract: In this paper various fiberings are constructed on analytic curves in which the topological reconstruction of the fibers proceeds on a nonanalytic set.
Let $D\subset C^1$ be the strip $-1<\operatorname{Re}\zeta<1$ and $D_1\subset D$ the strip $-1<\operatorname{Re}\zeta<0$. Analytic mappings $F\colon C^5\to C^4$ and $f\colon D\to C^5$ are constructed such that 1) for each $\zeta\in D_1$ the fiber $\chi_\zeta$ of the mapping $F$ which passes through the point $f(\zeta)$ has nontrivial fundamental group; 2) for each $\zeta\in{D\setminus D_1}$ the fiber $\chi_\zeta$ is simply connected.
Next it is shown that the generalization of the Petrovskii–Landis Hypothesis on the conservation of cycles for the equations $\dot z=V(z)$, $z\in C^n$, with analytic right-hand side $V(z)$, is valid. Indeed, in $C^2$ we construct a family $\alpha_\zeta$ of equations of the indicated form, analytic in $\zeta$ and such that 1) for each $\zeta\in D_1\setminus N$ ($N$ is a countable set) on one of the solutions of the equations $\alpha_\zeta$ there is a limit cycle $l(\zeta)$; 2) the cycle $l(\zeta)$ changes continuously as $\zeta$ runs over $D_1\setminus N$ and is broken as $\zeta$ approaches a point on the straight line $\operatorname{Re}\zeta=0$. Some related examples are also constructed.
Bibliography: 6 titles.
Received: 24.11.1970
Russian version:
Matematicheskii Sbornik. Novaya Seriya, 1972, Volume 87(129), Number 1, Pages 58–66
Bibliographic databases:
Document Type: Article
UDC: 516.2+517.9
MSC: Primary 32C15, 32E10; Secondary 32L05
Language: English
Original paper language: Russian
Citation: Yu. S. Ilyashenko, “Cycle breaking in fiberings on analytic curves”, Mat. Sb. (N.S.), 87(129):1 (1972), 58–66; Math. USSR-Sb., 16:1 (1972), 60–68
Citation in format AMSBIB
\Bibitem{Ily72}
\by Yu.~S.~Ilyashenko
\paper Cycle breaking in fiberings on analytic curves
\jour Mat. Sb. (N.S.)
\yr 1972
\vol 87(129)
\issue 1
\pages 58--66
\mathnet{http://mi.mathnet.ru/sm3035}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=307251}
\zmath{https://zbmath.org/?q=an:0234.34034|0263.34026}
\transl
\jour Math. USSR-Sb.
\yr 1972
\vol 16
\issue 1
\pages 60--68
\crossref{https://doi.org/10.1070/SM1972v016n01ABEH001349}
Linking options:
  • https://www.mathnet.ru/eng/sm3035
  • https://doi.org/10.1070/SM1972v016n01ABEH001349
  • https://www.mathnet.ru/eng/sm/v129/i1/p58
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:300
    Russian version PDF:94
    English version PDF:15
    References:70
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024