Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1976, Volume 29, Issue 4, Pages 475–495
DOI: https://doi.org/10.1070/SM1976v029n04ABEH003682
(Mi sm3016)
 

This article is cited in 20 scientific papers (total in 20 papers)

On uniform convergence of Fourier series

Z. A. Chanturiya
References:
Abstract: Let $f(x)$ be a continuous $2\pi$-periodic function, $S_n(f, x)$ the $n$th partial sum of its Fourier series, $\omega(\delta,f)$ the modulus of continuity and $v(n,f)$ the modulus of variation of $f(x)$. In this paper the following theorems are proved.
Theorem 1. {\it For $f(x)\in C(0,2\pi)$ the estimate
$$ \|f(x)-S_n(f, x)\|_{C(0,2\pi)}\leqslant C\min_{1\leqslant m\leqslant[\frac{n-1}2]}\Biggl\{\omega\biggl(\frac1n,f\biggr)\sum_{k=1}^m\frac1k+\sum_{k=m+1}^{[\frac{n-1}2]}\frac{v(k,f)}{k^2}\Biggr\},\quad n\geqslant3, $$
holds, where $C$ is an absolute constant.}
From this theorem there follows an estimate of Lebesgue and an estimate of Oskolkov.
Theorem 2. {\it In order that all Fourier series of class $H^\omega\cap V[v(n)]$ converge uniformly it is necessary and sufficient that
$$ \lim_{n\to\infty}\min_{1\leqslant m\leqslant[\frac{n-1}2]}\Biggl\{\omega\biggl(\frac1n\biggr)\sum_{k=1}^m\frac1k+\sum_{k=m+1}^{[\frac{n-1}2]}\frac{v(k)}{k^2}\Biggr\}=0. $$
}
Bibliography: 20 titles.
Received: 08.08.1975
Russian version:
Matematicheskii Sbornik. Novaya Seriya, 1976, Volume 100(142), Number 4(8), Pages 534–554
Bibliographic databases:
UDC: 517.522.3
MSC: Primary 42A20; Secondary 26A15, 26A16, 26A45
Language: English
Original paper language: Russian
Citation: Z. A. Chanturiya, “On uniform convergence of Fourier series”, Mat. Sb. (N.S.), 100(142):4(8) (1976), 534–554; Math. USSR-Sb., 29:4 (1976), 475–495
Citation in format AMSBIB
\Bibitem{Cha76}
\by Z.~A.~Chanturiya
\paper On uniform convergence of Fourier series
\jour Mat. Sb. (N.S.)
\yr 1976
\vol 100(142)
\issue 4(8)
\pages 534--554
\mathnet{http://mi.mathnet.ru/sm3016}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=420111}
\zmath{https://zbmath.org/?q=an:0339.42005}
\transl
\jour Math. USSR-Sb.
\yr 1976
\vol 29
\issue 4
\pages 475--495
\crossref{https://doi.org/10.1070/SM1976v029n04ABEH003682}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1976FB65000004}
Linking options:
  • https://www.mathnet.ru/eng/sm3016
  • https://doi.org/10.1070/SM1976v029n04ABEH003682
  • https://www.mathnet.ru/eng/sm/v142/i4/p534
  • This publication is cited in the following 20 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:677
    Russian version PDF:184
    English version PDF:27
    References:68
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024