Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 1998, Volume 189, Issue 2, Pages 235–263
DOI: https://doi.org/10.1070/sm1998v189n02ABEH000301
(Mi sm301)
 

This article is cited in 30 scientific papers (total in 30 papers)

Kolmogorov $\varepsilon$-entropy estimates for the uniform attractors of non-autonomous reaction-diffusion systems

M. I. Vishik, V. V. Chepyzhov

Institute for Information Transmission Problems, Russian Academy of Sciences
References:
Abstract: The Kolmogorov $\varepsilon$-entropy of the uniform attractor $\mathscr A$ of a family of non-autonomous reaction-diffusion systems with external forces $g(x,t)$ is studied. The external forces $g(x,t)$ are assumed to belong to some subset $\sigma$ of $C({\mathbb R};H)$, where $H=(L_2(\Omega ))^N$, that is invariant under the group of $t$-translations. Furthermore, $\sigma$ is compact in $C({\mathbb R};H)$.
An estimate for the $\varepsilon$-entropy of the uniform attractor $\mathscr A$ is given in terms of the $\varepsilon _1=\varepsilon _1(\varepsilon )$-entropy of the compact subset $\sigma_l$ of $C([0,l];H)$ consisting of the restrictions of the external forces $g(x,t)\in \sigma$ to the interval $[0,l]$, $l=l(\varepsilon )$ ($\varepsilon _1(\varepsilon )\sim \mu \varepsilon $, $l(\varepsilon )\sim \tau \log _2(1/\varepsilon )$). This general estimate is illustrated by several examples from different fields of mathematical physics and information theory.
Received: 18.09.1997
Bibliographic databases:
UDC: 517.95
MSC: 35K57, 35B40
Language: English
Original paper language: Russian
Citation: M. I. Vishik, V. V. Chepyzhov, “Kolmogorov $\varepsilon$-entropy estimates for the uniform attractors of non-autonomous reaction-diffusion systems”, Sb. Math., 189:2 (1998), 235–263
Citation in format AMSBIB
\Bibitem{VisChe98}
\by M.~I.~Vishik, V.~V.~Chepyzhov
\paper Kolmogorov $\varepsilon$-entropy estimates for the~uniform attractors of non-autonomous reaction-diffusion systems
\jour Sb. Math.
\yr 1998
\vol 189
\issue 2
\pages 235--263
\mathnet{http://mi.mathnet.ru//eng/sm301}
\crossref{https://doi.org/10.1070/sm1998v189n02ABEH000301}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1622313}
\zmath{https://zbmath.org/?q=an:0915.35056}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000073979600011}
\elib{https://elibrary.ru/item.asp?id=13812599}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0032346974}
Linking options:
  • https://www.mathnet.ru/eng/sm301
  • https://doi.org/10.1070/sm1998v189n02ABEH000301
  • https://www.mathnet.ru/eng/sm/v189/i2/p81
  • This publication is cited in the following 30 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:1367
    Russian version PDF:276
    English version PDF:16
    References:82
    First page:7
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024