|
This article is cited in 3 scientific papers (total in 3 papers)
Normal divisors of a 2-transitive group of automorphisms of a linearly ordered set
E. B. Rabinovich, V. Z. Feinberg
Abstract:
The main result of the paper is a description of the normal structure of the groups $\operatorname{Aut}(X,\leqslant)$, where $X$ is a linearly ordered set satisfying one of the following equivalent conditions: I. $\operatorname{Aut}(X,\leqslant)$ is 2-transitive. II. $\operatorname{Aut}(X,\leqslant)$ is $k$-transitive. III. $X$ does not have a greatest or a least element, and any two intervals $[a,b]$, $a<b$ and $[c,d]$, $c<d$, are similar. IV. $\operatorname{Aut}(X,\leqslant)$ is a 0-primitive, transitive, nonregular permutation group.
Main theorem. {\it Suppose $\operatorname{Aut}(X,\leqslant)$ is $2$-transitive. Then $\overline A,$ $\overset\rightarrow A$ and $\overset\leftarrow A$ are the only nontrivial normal and subnormal subgroups of $\operatorname{Aut}(X,\leqslant)$. Here
\begin{gather*}
\overset\leftarrow A=\{g\in\operatorname{Aut}(X,\leqslant)\mid \operatorname{Tr}g\text{ is bounded below}\},\\
\overset\rightarrow A=\{g\in\operatorname{Aut}(X,\leqslant)\mid \operatorname{Tr}g\text{ is bounded above}\},\\
\overline A=\overset\rightarrow A\cap\overset\leftarrow A,\qquad\operatorname{Tr}g=\{x\in X\mid g(x)\ne x\}.
\end{gather*} }
Bibliography: 21 titles.
Received: 04.04.1973
Citation:
E. B. Rabinovich, V. Z. Feinberg, “Normal divisors of a 2-transitive group of automorphisms of a linearly ordered set”, Math. USSR-Sb., 22:2 (1974), 187–200
Linking options:
https://www.mathnet.ru/eng/sm2968https://doi.org/10.1070/SM1974v022n02ABEH002165 https://www.mathnet.ru/eng/sm/v135/i2/p189
|
Statistics & downloads: |
Abstract page: | 259 | Russian version PDF: | 97 | English version PDF: | 15 | References: | 38 |
|