Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1977, Volume 33, Issue 4, Pages 447–464
DOI: https://doi.org/10.1070/SM1977v033n04ABEH002432
(Mi sm2960)
 

This article is cited in 12 scientific papers (total in 12 papers)

On the boundedness of a singular integral operator in the space $C^\alpha(\overline G)$

D. S. Anikonov
References:
Abstract: The article considers an operator of the form
$$ [Au](x)=\int_G\frac{f(x,s)}{|x-y|^m}u(y)\,dy, $$
where $G$ is a bounded domain in $\mathbf R^m$ with a smooth boundary, $x\in G$, $S\in\Omega$, $\Omega=\{s: s\in\mathbf R^m,|s|=1\}$, $u(y)\in C^\alpha(\overline G)$, $0<\alpha<1$. It is proved that if the function $f(x,s)$ satisfies a Hölder condition with exponent $\lambda$, $\alpha<\lambda<1$, and the condition
\begin{equation} \int_{\Omega_1}f(x,s)\,ds=0\qquad x\in G \end{equation}
(where $\Omega_1$ is any polysphere), then the operator is bounded from $C^\alpha(\overline G)$ to $C^\alpha(\overline G)$. Moreover, if $f(x,s)=g(s)$, then in order that the operator $A$ should be defined and bounded from $C^\alpha(\overline G)$ to $C^\alpha(\overline G)$ the condition (1) is necessary.
Bibliography: 6 titles.
Received: 25.10.1976
Bibliographic databases:
UDC: 517.443
MSC: 44A25, 47G05
Language: English
Original paper language: Russian
Citation: D. S. Anikonov, “On the boundedness of a singular integral operator in the space $C^\alpha(\overline G)$”, Math. USSR-Sb., 33:4 (1977), 447–464
Citation in format AMSBIB
\Bibitem{Ani77}
\by D.~S.~Anikonov
\paper On~the boundedness of a~singular integral operator in the space $C^\alpha(\overline G)$
\jour Math. USSR-Sb.
\yr 1977
\vol 33
\issue 4
\pages 447--464
\mathnet{http://mi.mathnet.ru//eng/sm2960}
\crossref{https://doi.org/10.1070/SM1977v033n04ABEH002432}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=487594}
\zmath{https://zbmath.org/?q=an:0379.47035|0402.47029}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1977GX43200001}
Linking options:
  • https://www.mathnet.ru/eng/sm2960
  • https://doi.org/10.1070/SM1977v033n04ABEH002432
  • https://www.mathnet.ru/eng/sm/v146/i4/p515
  • This publication is cited in the following 12 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024