Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1977, Volume 33, Issue 3, Pages 403–425
DOI: https://doi.org/10.1070/SM1977v033n03ABEH002430
(Mi sm2949)
 

This article is cited in 8 scientific papers (total in 8 papers)

The angular boundary layer in mixed singularly perturbed problems for hyperbolic equations

V. F. Butuzov
References:
Abstract: We obtain an asymptotic expansion in the small parameter $\varepsilon$ of the solution of a mixed boundary value problem for the equation
$$ \varepsilon^2\biggl(\frac{\partial^2u}{\partial t^2}-\frac{\partial^2u}{\partial x^2}\biggr)+\varepsilon^ka(x,t)\frac{\partial u}{\partial t}+b(x,t)u=f(x,t)\qquad(0<x<l,\quad0<l\leqslant T) $$
in the two cases $k=1$ and $k=1/2$.
The asymptotics of the solution contains a regular part, consisting of ordinary boundary functions, which play a role in a neighborhood of the sides $t=0$, $x=0$, and $x=l$, and the so-called angular boundary functions, which come into play in a neighborhood of the angular points $(0,0)$ and $(l,0)$. When $k=1$, these angular boundary functions are determined from hyperbolic equations with constant coefficients; when $k=1/2$, they are determined from parabolic equations with constant coefficients.
Bibliography: 7 titles.
Received: 16.05.1977
Russian version:
Matematicheskii Sbornik. Novaya Seriya, 1977, Volume 104(146), Number 3(11), Pages 460–485
Bibliographic databases:
UDC: 517.946
MSC: Primary 35L15, 35L20, 35B25, 35B40, 35M05; Secondary 76D10
Language: English
Original paper language: Russian
Citation: V. F. Butuzov, “The angular boundary layer in mixed singularly perturbed problems for hyperbolic equations”, Mat. Sb. (N.S.), 104(146):3(11) (1977), 460–485; Math. USSR-Sb., 33:3 (1977), 403–425
Citation in format AMSBIB
\Bibitem{But77}
\by V.~F.~Butuzov
\paper The angular boundary layer in mixed singularly perturbed problems for hyperbolic equations
\jour Mat. Sb. (N.S.)
\yr 1977
\vol 104(146)
\issue 3(11)
\pages 460--485
\mathnet{http://mi.mathnet.ru/sm2949}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=487053}
\zmath{https://zbmath.org/?q=an:0367.35007|0398.35005}
\transl
\jour Math. USSR-Sb.
\yr 1977
\vol 33
\issue 3
\pages 403--425
\crossref{https://doi.org/10.1070/SM1977v033n03ABEH002430}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1977GS82800005}
Linking options:
  • https://www.mathnet.ru/eng/sm2949
  • https://doi.org/10.1070/SM1977v033n03ABEH002430
  • https://www.mathnet.ru/eng/sm/v146/i3/p460
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:564
    Russian version PDF:198
    English version PDF:26
    References:72
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024