Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1976, Volume 30, Issue 1, Pages 51–67
DOI: https://doi.org/10.1070/SM1976v030n01ABEH001898
(Mi sm2945)
 

This article is cited in 16 scientific papers (total in 16 papers)

Separately analytic functions, generalizations of Hartogs' theorem, and envelopes of holomorphy

V. P. Zaharyuta
References:
Abstract: Let $\mathscr D$ and $\mathcal G$ be arbitrary Stein manifolds, $E\subset\mathscr D$ and $F\subset\mathscr G$ compact sets, and $X=(E\times\mathscr G)\cup(\mathscr D\times F)$. Under certain general hypotheses it is proved that a function $f$ on $X$ which is separately analytic, i.e. for which $f(z,w)$ is analytic in $z$ in $\mathscr D$ for any fixed $w\in F$ and analytic in $w$ in $\mathscr G$ for any fixed $z\in E$, extends to an analytic function in some open neighborhood $\widetilde X$ of $X$ which is the envelope of holomorphy of $X$. The envelope of holomorphy of $X$ is studied in those cases in which $X$ has no open envelope of holomorphy.
Bibliography: 26 titles.
Received: 29.09.1975
Russian version:
Matematicheskii Sbornik. Novaya Seriya, 1976, Volume 101(143), Number 1(9), Pages 57–76
Bibliographic databases:
UDC: 517.53
MSC: 32D10
Language: English
Original paper language: Russian
Citation: V. P. Zaharyuta, “Separately analytic functions, generalizations of Hartogs' theorem, and envelopes of holomorphy”, Mat. Sb. (N.S.), 101(143):1(9) (1976), 57–76; Math. USSR-Sb., 30:1 (1976), 51–67
Citation in format AMSBIB
\Bibitem{Zah76}
\by V.~P.~Zaharyuta
\paper Separately analytic functions, generalizations of Hartogs' theorem, and envelopes of holomorphy
\jour Mat. Sb. (N.S.)
\yr 1976
\vol 101(143)
\issue 1(9)
\pages 57--76
\mathnet{http://mi.mathnet.ru/sm2945}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=425171}
\zmath{https://zbmath.org/?q=an:0357.32002}
\transl
\jour Math. USSR-Sb.
\yr 1976
\vol 30
\issue 1
\pages 51--67
\crossref{https://doi.org/10.1070/SM1976v030n01ABEH001898}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1976FJ58100004}
Linking options:
  • https://www.mathnet.ru/eng/sm2945
  • https://doi.org/10.1070/SM1976v030n01ABEH001898
  • https://www.mathnet.ru/eng/sm/v143/i1/p57
  • This publication is cited in the following 16 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:393
    Russian version PDF:136
    English version PDF:18
    References:55
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024