Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1977, Volume 32, Issue 4, Pages 535–549
DOI: https://doi.org/10.1070/SM1977v032n04ABEH002405
(Mi sm2932)
 

This article is cited in 28 scientific papers (total in 28 papers)

The first boundary value problem in domains with a complicated boundary for higher order equations

E. Ya. Khruslov
References:
Abstract: The first boundary value problem is considered for an elliptic selfadjoint operator $L$ of order $2m$ in a domain $\Omega^{(s)}$ of complicated structure of the form $\Omega^{(s)}=\Omega\setminus F^{(s)}$, where $\Omega$ is a comparatively simple domain in $\mathbf R_n$ ($n\geqslant2$) and $F^{(s)}$ is a closed, connected, highly fragmented set in $\Omega$. The asymptotic behavior of the resolvent $R^{(s)}$ of this problem is studied for $s\to\infty$ when the set $F^{(s)}$ becomes ever more fragmented and is disposed volumewise in $\Omega$ so that the distance from $F^{(s)}$ to any point $x\in\Omega$ tends to zero.
It is shown that $R^{(s)}$ converges in norm to the resolvent $R^c$ of an operator $L+c(x)$, which is considered in the simple domain $\Omega$ under null conditions in $\partial\Omega$. A massivity characteristic of the sets $F^{(s)}$ (of capacity type) is introduced, which is used to formulate necessary and sufficient conditions for convergence, and the function $c(x)$ is described.
Bibliography: 7 titles.
Received: 09.11.1976
Russian version:
Matematicheskii Sbornik. Novaya Seriya, 1977, Volume 103(145), Number 4(8), Pages 614–629
Bibliographic databases:
UDC: 517.946
MSC: Primary 35J40; Secondary 47B25
Language: English
Original paper language: Russian
Citation: E. Ya. Khruslov, “The first boundary value problem in domains with a complicated boundary for higher order equations”, Mat. Sb. (N.S.), 103(145):4(8) (1977), 614–629; Math. USSR-Sb., 32:4 (1977), 535–549
Citation in format AMSBIB
\Bibitem{Khr77}
\by E.~Ya.~Khruslov
\paper The first boundary value problem in~domains with a~complicated boundary for higher order equations
\jour Mat. Sb. (N.S.)
\yr 1977
\vol 103(145)
\issue 4(8)
\pages 614--629
\mathnet{http://mi.mathnet.ru/sm2932}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=463679}
\zmath{https://zbmath.org/?q=an:0359.35023}
\transl
\jour Math. USSR-Sb.
\yr 1977
\vol 32
\issue 4
\pages 535--549
\crossref{https://doi.org/10.1070/SM1977v032n04ABEH002405}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1977GL81400009}
Linking options:
  • https://www.mathnet.ru/eng/sm2932
  • https://doi.org/10.1070/SM1977v032n04ABEH002405
  • https://www.mathnet.ru/eng/sm/v145/i4/p614
  • This publication is cited in the following 28 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:334
    Russian version PDF:93
    English version PDF:18
    References:55
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024