Loading [MathJax]/jax/output/SVG/config.js
Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1977, Volume 32, Issue 4, Pages 489–514
DOI: https://doi.org/10.1070/SM1977v032n04ABEH002403
(Mi sm2930)
 

This article is cited in 32 scientific papers (total in 32 papers)

Approximation properties of summable functions on sets of full measure

K. I. Oskolkov
References:
Abstract: Estimates are obtained of the rate of approximation almost everywhere as a function of the modulus of continuity of the approximated functions in $L^p$, and of the set from which the approximating functions are chosen. From this point of view the author studies the approximation of functions by Steklov means, partial sums of Fourier–Haar series, arbitrary sequences of polynomials in the Haar and Faber–Schauder systems, and piecewise monotone functions with variable intervals of monotonicity. The estimates of the rate of approximation almost everywhere that are obtained are distinguished from approximation estimates in an integral metric (i.e. from estimates of the type of Jackson's theorem in $L^p$) by unbounded factors depending on the modulus of continuity and the approximating functions. Estimates of the growth of these factors are obtained, and it is established that in a number of cases these estimates are best possible, or almost so.
Bibliography: 17 titles.
Received: 03.02.1977
Bibliographic databases:
UDC: 517.5
MSC: Primary 41A25; Secondary 42A56
Language: English
Original paper language: Russian
Citation: K. I. Oskolkov, “Approximation properties of summable functions on sets of full measure”, Math. USSR-Sb., 32:4 (1977), 489–514
Citation in format AMSBIB
\Bibitem{Osk77}
\by K.~I.~Oskolkov
\paper Approximation properties of summable functions on sets of full measure
\jour Math. USSR-Sb.
\yr 1977
\vol 32
\issue 4
\pages 489--514
\mathnet{http://mi.mathnet.ru/eng/sm2930}
\crossref{https://doi.org/10.1070/SM1977v032n04ABEH002403}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=473679}
\zmath{https://zbmath.org/?q=an:0371.41008}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1977GL81400007}
Linking options:
  • https://www.mathnet.ru/eng/sm2930
  • https://doi.org/10.1070/SM1977v032n04ABEH002403
  • https://www.mathnet.ru/eng/sm/v145/i4/p563
  • This publication is cited in the following 32 articles:
    1. Per G. Nilsson, “Representation of real interpolation spaces using weighted couples of radon measures”, Anal.Math.Phys., 15:3 (2025)  crossref
    2. V. G. Krotov, A. I. Porabkovich, “Estimates of $L^p$-Oscillations of Functions for $p>0$”, Math. Notes, 97:3 (2015), 384–395  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    3. V. I. Ovchinnikov, “Interpolation functions and the Lions–Peetre interpolation construction”, Russian Math. Surveys, 69:4 (2014), 681–741  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    4. A. A. Dmitriev, “Ob otsenke konstanty $\mathscr{K}$-delimosti v parakh banakhovykh prostranstv”, Dalnevost. matem. zhurn., 13:2 (2013), 179–191  mathnet
    5. V. G. Krotov, “Criteria for compactness in $L^p$-spaces, $p\geqslant0$”, Sb. Math., 203:7 (2012), 1045–1064  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    6. Veniamin G. Krotov, Springer Proceedings in Mathematics & Statistics, 25, Recent Advances in Harmonic Analysis and Applications, 2012, 197  crossref
    7. Alexander M. Stokolos, Walter Trebels, Springer Proceedings in Mathematics & Statistics, 25, Recent Advances in Harmonic Analysis and Applications, 2012, 339  crossref
    8. Krotov V.G., “Quantitative Form of the Luzin C-Property”, Ukr. Math. J., 62:3 (2010), 441–451  crossref  mathscinet  zmath  isi
    9. Luboš Pick, International Mathematical Series, 13, Around the Research of Vladimir Maz'ya III, 2010, 279  crossref
    10. I. A. Ivanishko, V. G. Krotov, “Compactness of Embeddings of Sobolev Type on Metric Measure Spaces”, Math. Notes, 86:6 (2009), 775–788  mathnet  crossref  crossref  mathscinet  zmath  isi
    11. V. G. Krotov, M. A. Prokhorovich, “The Luzin approximation of functions from the classes $W^p_\alpha$ on metric spaces with measure”, Russian Math. (Iz. VUZ), 52:5 (2008), 47–57  mathnet  crossref  mathscinet  zmath  elib
    12. Dai F., Wang K., “Convergence Rate of Spherical Harmonic Expansions of Smooth Functions”, J. Math. Anal. Appl., 348:1 (2008), 28–33  crossref  mathscinet  zmath  isi
    13. Girela D., “A Class of Conformal Mappings with Applications to Function Spaces”, Recent Advances in Operator-Related Function Theory, Contemporary Mathematics Series, 393, eds. Matheson A., Stessin M., Timoney R., Amer Mathematical Soc, 2006, 113–121  crossref  mathscinet  zmath  isi
    14. Krotov V., “Weighted l-P-Inequalities for Sharp-Maximal Functions”, Dokl. Math., 72:2 (2005), 684–686  mathscinet  zmath  isi
    15. Girela D., Pelaez J., “On the Derivative of Infinite Blaschke Products”, Ill. J. Math., 48:1 (2004), 121–130  crossref  mathscinet  zmath  isi
    16. A. S. Romanyuk, “Best $M$-term trigonometric approximations of Besov classes of periodic functions of several variables”, Izv. Math., 67:2 (2003), 265–302  mathnet  crossref  crossref  mathscinet  zmath  isi
    17. Gogatishvili A., Pick L., “Discretization and Anti-Discretization of Rearrangement-Invariant Norms”, Publ. Mat., 47:2 (2003), 311–358  crossref  mathscinet  zmath  isi
    18. Yuri Kryakin, Walter Trebels, “q-Moduli of Continuity in Hp(), p>0, and an Inequality of Hardy and Littlewood”, Journal of Approximation Theory, 115:2 (2002), 238  crossref  mathscinet  zmath
    19. José García-Cuerva, Víctor I. Kolyada, “Rearrangement Estimates for Fourier Transforms inLp andHp in Terms of Moduli of Continuity”, Math Nachr, 228:1 (2001), 123  crossref  mathscinet  zmath
    20. V. I. Ovchinnikov, A. S. Titenkov, “A Criterion for Contiguity of Quasiconcave Functions”, Math. Notes, 70:5 (2001), 708–713  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:672
    Russian version PDF:240
    English version PDF:36
    References:95
    First page:1
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025