Abstract:
In this paper analytic continuation and functional equations are proved for Eisenstein series on the symplectic group associated to forms that are not cusp forms.
Bibliography: 9 titles.
\Bibitem{Kal77}
\by V.~L.~Kalinin
\paper Eisenstein series on the symplectic group
\jour Math. USSR-Sb.
\yr 1977
\vol 32
\issue 4
\pages 449--476
\mathnet{http://mi.mathnet.ru/eng/sm2925}
\crossref{https://doi.org/10.1070/SM1977v032n04ABEH002399}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=563064}
\zmath{https://zbmath.org/?q=an:0363.10020}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1977GL81400005}
Linking options:
https://www.mathnet.ru/eng/sm2925
https://doi.org/10.1070/SM1977v032n04ABEH002399
https://www.mathnet.ru/eng/sm/v145/i4/p519
This publication is cited in the following 28 articles:
OLIVER STEIN, “ANALYTIC PROPERTIES OF EISENSTEIN SERIES AND STANDARD -FUNCTIONS”, Nagoya Math. J., 244 (2021), 168
Shin-ichiro Mizumoto, “Functional equations of real analytic Jacobi Eisenstein series”, Abh. Math. Semin. Univ. Hambg., 89:1 (2019), 55
Shuichi HAYASHIDA, “RANKIN-SELBERG METHOD FOR JACOBI FORMS OF INTEGRAL WEIGHT AND OF HALF-INTEGRAL WEIGHT ON SYMPLECTIC GROUPS”, Kyushu J. Math., 73:2 (2019), 391
Shin-ichiro Mizumoto, “A Dirichlet series attached to three Siegel modular forms”, Abh. Math. Semin. Univ. Hambg., 87:1 (2017), 113
Audrey Terras, Harmonic Analysis on Symmetric Spaces—Higher Rank Spaces, Positive Definite Matrix Space and Generalizations, 2016, 337
S. Mizumoto, “Congruences for Fourier coefficients of lifted Siegel modular forms I: Eisenstein lifts”, Abh Math Semin Univ Hambg, 75:1 (2005), 97
[Anonymous], “Non-Archimedean l-Functions and Arithmetical Siegel Modular Forms”, Non-Archimedean l-Functions and Arithmetical Siegel Modular Forms, 2nd Augmented Ed, Lecture Notes in Mathematics, 1471, Springer-Verlag Berlin, 2004, 13+
Beineke J., “Renormalization of Certain Integrals Defining Triple Product l-Functions”, Pac. J. Math., 203:1 (2002), 89–114
Shin-ichiro Mizumoto, “Special values of triple product L-Functions and nearly holomorphic Eisenstein series”, Abh Math Semin Univ Hambg, 70:1 (2000), 191
S. Mizumoto, “Nearly holomorphic Eisenstein liftings”, Abh Math Semin Univ Hambg, 67:1 (1997), 173