Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1976, Volume 29, Issue 1, Pages 35–54
DOI: https://doi.org/10.1070/SM1976v029n01ABEH003650
(Mi sm2854)
 

This article is cited in 2 scientific papers (total in 2 papers)

On the completeness of derived chains

G. V. Radzievskii
References:
Abstract: We study the problem of completeness of the system of eigenvectors and associated vectors of operator-valued functions which are analytic in an angular region and which assume values in the ring $\mathfrak R$ of bounded linear operators in a separable Hilbert space $\mathfrak H$. As a corollary of the fundamental theorem proved in this paper we obtain the following result.
Theorem 1. {\it Let $L(\lambda)=I-B_0H^\beta-\lambda B_1 H^{1+\beta}-\dots-\lambda^{n-1}B_{n-1}H^{n-1+\beta}-\lambda^nH^n,$ where $\beta>0$. $B_k\in\mathfrak R$ and $H$ is a completely continuous positive operator, moreover, let $\varliminf us^q_u(H)=0$ for some $q>0$. Then for every $\varepsilon>0$ the closed linear hull of the eigenvectors and associated vectors of $L(\lambda)$ (or $L^*(\overline\lambda)$) which correspond to the eigenvalues lying in the angular region $|\arg\lambda|<\varepsilon$ has finite defect in $\mathfrak H$.}
Bibliography: 20 titles.
Received: 03.06.1974
Russian version:
Matematicheskii Sbornik. Novaya Seriya, 1976, Volume 100(142), Number 1(5), Pages 37–58
Bibliographic databases:
UDC: 517.43
MSC: Primary 47A70; Secondary 34B25, 46E40
Language: English
Original paper language: Russian
Citation: G. V. Radzievskii, “On the completeness of derived chains”, Mat. Sb. (N.S.), 100(142):1(5) (1976), 37–58; Math. USSR-Sb., 29:1 (1976), 35–54
Citation in format AMSBIB
\Bibitem{Rad76}
\by G.~V.~Radzievskii
\paper On the completeness of derived chains
\jour Mat. Sb. (N.S.)
\yr 1976
\vol 100(142)
\issue 1(5)
\pages 37--58
\mathnet{http://mi.mathnet.ru/sm2854}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=415377}
\zmath{https://zbmath.org/?q=an:0329.47006}
\transl
\jour Math. USSR-Sb.
\yr 1976
\vol 29
\issue 1
\pages 35--54
\crossref{https://doi.org/10.1070/SM1976v029n01ABEH003650}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1976EV78700004}
Linking options:
  • https://www.mathnet.ru/eng/sm2854
  • https://doi.org/10.1070/SM1976v029n01ABEH003650
  • https://www.mathnet.ru/eng/sm/v142/i1/p37
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:274
    Russian version PDF:107
    English version PDF:18
    References:47
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024