Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1976, Volume 28, Issue 4, Pages 501–520
DOI: https://doi.org/10.1070/SM1976v028n04ABEH001666
(Mi sm2775)
 

This article is cited in 11 scientific papers (total in 11 papers)

Generalized uniserial rings

V. V. Kirichenko
References:
Abstract: A description is given of two-sided Noetherian rings over which all finitely generated modules are semichained.
Bibliography: 29 titles.
Received: 27.02.1975 and 04.12.1975
Bibliographic databases:
UDC: 519.49
MSC: Primary 16A46, 16A48, 16A64; Secondary 16A18, 16A32, 16A50
Language: English
Original paper language: Russian
Citation: V. V. Kirichenko, “Generalized uniserial rings”, Math. USSR-Sb., 28:4 (1976), 501–520
Citation in format AMSBIB
\Bibitem{Kir76}
\by V.~V.~Kirichenko
\paper Generalized uniserial rings
\jour Math. USSR-Sb.
\yr 1976
\vol 28
\issue 4
\pages 501--520
\mathnet{http://mi.mathnet.ru/eng/sm2775}
\crossref{https://doi.org/10.1070/SM1976v028n04ABEH001666}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=407083}
\zmath{https://zbmath.org/?q=an:0328.16022}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1976EQ33200005}
Linking options:
  • https://www.mathnet.ru/eng/sm2775
  • https://doi.org/10.1070/SM1976v028n04ABEH001666
  • https://www.mathnet.ru/eng/sm/v141/i4/p559
  • This publication is cited in the following 11 articles:
    1. Raphael Bennett-Tennenhaus, “String algebras over local rings: admissibility and biseriality”, Journal of Algebra, 2025  crossref
    2. Vladimir Kirichenko, Makar Plakhotnyk, “Serial rings and their generalizations”, Bul. Acad. Ştiinţe Repub. Mold. Mat., 2011, no. 1, 3–27  mathnet  mathscinet  zmath
    3. M. A. Dokuchaev, N. M. Gubareni, V. V. Kirichenko, “Semiperfect ipri-rings and right Bézout rings”, Ukr Math J, 2010  crossref  mathscinet
    4. Dokuchaev M.A., Kirichenko V.V., Novikov B.V., Petravchuk A.P., “On Incidence Modulo Ideal Rings”, J. Algebra. Appl., 6:4 (2007), 553–586  crossref  mathscinet  zmath  isi
    5. Michiel Hazewinkel, Nadiya Gubareni, V.V. Kirichenko, Mathematics and Its Applications, 586, Algebras, Rings and Modules, 2007, 161  crossref
    6. V. V. Kirichenko, Yu. V. Yaremenko, “On Semiperfect Semidistributive Rings”, Math. Notes, 69:1 (2001), 134–137  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    7. A. I. Generalov, “Krull dimension of the module category over right noetherian serial rings”, J. Math. Sci. (New York), 95:2 (1999), 2088–2095  mathnet  crossref  mathscinet  zmath
    8. A. A. Tuganbaev, “Direct sums of distributive modules”, Sb. Math., 187:12 (1996), 1869–1887  mathnet  crossref  crossref  mathscinet  zmath  isi
    9. Puninski G., “Pure-Injective Modules Over Right Noetherian Serial Rings”, Commun. Algebr., 23:4 (1995), 1579–1591  crossref  mathscinet  zmath  isi
    10. Kirichenko V., Bernik O., “Semi-Perfect Rings of the Distributive-Module Rings”, no. 3, 1988, 14–17  mathscinet  isi
    11. O. E. Gregul', V. V. Kirichenko, “Semiinherent semichain rings”, Ukr Math J, 39:2 (1987), 130  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:493
    Russian version PDF:136
    English version PDF:70
    References:94
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025