Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1976, Volume 28, Issue 4, Pages 431–458
DOI: https://doi.org/10.1070/SM1976v028n04ABEH001662
(Mi sm2769)
 

This article is cited in 23 scientific papers (total in 23 papers)

Euler products for congruence subgroups of the Siegel group of genus $2$

S. A. Evdokimov
References:
Abstract: In this paper the construction is begun of a theory of Dirichlet series with Euler expansion which correspond to analytic automorphic forms for congruence subgroups of the integral symplectic group of genus $2$. Namely, for an arbitrary positive integer $q$ a connection is revealed between the eigenvalues $\lambda_F(m)$ of an eigenfunction $F\in\mathfrak M_k\bigl(\Gamma_2(q)\bigr)$ of all the Hecke operators $T_k(m)$ ($(m,q)=1$), where $\Gamma_2(q)$ is the principal congruence subgroup of degree $q$ of the group $\Gamma_2=\operatorname{Sp}_2(\mathbf Z)$, and its Fourier coefficients. This connection can be written in the language of Dirichlet series in the form of identities; here an infinite sequence of identities arises, indexed by classes of positive definite integral primitive binary quadratic forms equivalent modulo the principal congruence subgroup of degree $q$ of $\operatorname{SL}_2(\mathbf Z)$.
Bibliography: 15 titles.
Received: 16.10.1975
Russian version:
Matematicheskii Sbornik. Novaya Seriya, 1976, Volume 99(141), Number 4, Pages 483–513
Bibliographic databases:
UDC: 511.61
MSC: Primary 10D05; Secondary 10C05
Language: English
Original paper language: Russian
Citation: S. A. Evdokimov, “Euler products for congruence subgroups of the Siegel group of genus $2$”, Mat. Sb. (N.S.), 99(141):4 (1976), 483–513; Math. USSR-Sb., 28:4 (1976), 431–458
Citation in format AMSBIB
\Bibitem{Evd76}
\by S.~A.~Evdokimov
\paper Euler products for congruence subgroups of the Siegel group of genus~$2$
\jour Mat. Sb. (N.S.)
\yr 1976
\vol 99(141)
\issue 4
\pages 483--513
\mathnet{http://mi.mathnet.ru/sm2769}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=414492}
\zmath{https://zbmath.org/?q=an:0348.10016}
\transl
\jour Math. USSR-Sb.
\yr 1976
\vol 28
\issue 4
\pages 431--458
\crossref{https://doi.org/10.1070/SM1976v028n04ABEH001662}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1976EQ33200001}
Linking options:
  • https://www.mathnet.ru/eng/sm2769
  • https://doi.org/10.1070/SM1976v028n04ABEH001662
  • https://www.mathnet.ru/eng/sm/v141/i4/p483
  • This publication is cited in the following 23 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:314
    Russian version PDF:93
    English version PDF:15
    References:45
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024