Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1976, Volume 28, Issue 2, Pages 249–261
DOI: https://doi.org/10.1070/SM1976v028n02ABEH001650
(Mi sm2745)
 

This article is cited in 8 scientific papers (total in 8 papers)

On an estimate of the Dirichlet integral in unbounded domains

A. K. Gushchin
References:
Abstract: For an arbitrary unbounded region $\Omega$ satisfying a certain condition ($\operatorname{meas}\Omega=\infty$, and $\Omega$ can be such that
$$ \lim_{R\to\infty}\frac1R\operatorname{meas}\bigl(\Omega\cap\{|x|<R\}\bigr)=0\bigr) $$
a lower bound for the Dirichlet integral $\int_\Omega|\nabla f(x)|^2\,dx$ is established for all functions $f(x)$ in $W_2^1(\Omega)\cap L_r(\Omega)$ which have finite moment $\mu_l=\int_\Omega|x|\,|f(x)|^l\,dx$, $0<l<2<r$. The bound of the Dirichlet integral is a positive function of the variables $\mu_l$, $\|f\|_{L_r(\Omega)}$, $\|f\|_{L_2(\Omega)}$ and $\|f\|_{L_q(\Omega)}$, $q\geqslant1$, $l\leqslant q<2$, and is determined by certain geometric characteristics of $\Omega$.
Bibliography: 4 titles.
Received: 26.06.1975
Bibliographic databases:
Document Type: Article
UDC: 517.5
MSC: Primary 26A86; Secondary 35K20, 35A15
Language: English
Original paper language: Russian
Citation: A. K. Gushchin, “On an estimate of the Dirichlet integral in unbounded domains”, Math. USSR-Sb., 28:2 (1976), 249–261
Citation in format AMSBIB
\Bibitem{Gus76}
\by A.~K.~Gushchin
\paper On an estimate of the Dirichlet integral in unbounded domains
\jour Math. USSR-Sb.
\yr 1976
\vol 28
\issue 2
\pages 249--261
\mathnet{http://mi.mathnet.ru//eng/sm2745}
\crossref{https://doi.org/10.1070/SM1976v028n02ABEH001650}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=626999}
\zmath{https://zbmath.org/?q=an:0338.35009}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1976EM69100008}
Linking options:
  • https://www.mathnet.ru/eng/sm2745
  • https://doi.org/10.1070/SM1976v028n02ABEH001650
  • https://www.mathnet.ru/eng/sm/v141/i2/p282
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025