|
This article is cited in 8 scientific papers (total in 8 papers)
On an estimate of the Dirichlet integral in unbounded domains
A. K. Gushchin
Abstract:
For an arbitrary unbounded region $\Omega$ satisfying a certain condition
($\operatorname{meas}\Omega=\infty$, and $\Omega$ can be such that
$$
\lim_{R\to\infty}\frac1R\operatorname{meas}\bigl(\Omega\cap\{|x|<R\}\bigr)=0\bigr)
$$
a lower bound for the Dirichlet integral $\int_\Omega|\nabla f(x)|^2\,dx$ is established for
all functions $f(x)$ in $W_2^1(\Omega)\cap L_r(\Omega)$ which have finite moment
$\mu_l=\int_\Omega|x|\,|f(x)|^l\,dx$, $0<l<2<r$. The bound of the Dirichlet integral is a positive function of the variables $\mu_l$, $\|f\|_{L_r(\Omega)}$, $\|f\|_{L_2(\Omega)}$ and $\|f\|_{L_q(\Omega)}$, $q\geqslant1$, $l\leqslant q<2$, and is determined by
certain geometric characteristics of $\Omega$.
Bibliography: 4 titles.
Received: 26.06.1975
Citation:
A. K. Gushchin, “On an estimate of the Dirichlet integral in unbounded domains”, Math. USSR-Sb., 28:2 (1976), 249–261
Linking options:
https://www.mathnet.ru/eng/sm2745https://doi.org/10.1070/SM1976v028n02ABEH001650 https://www.mathnet.ru/eng/sm/v141/i2/p282
|
|