Abstract:
Spherical (zonal) functions on the hyperboloid −x21−⋯−x2p+x2p+1+⋯+x2p+q=1 corresponding to unitary representations of the group SO(p,q) connected with a cone (RZhMat., 1970, 7B710) are defined and computed.
Bibliography: 15 titles.
This publication is cited in the following 15 articles:
Molchanov V.F. Neretin Yu.A., “A Pair of Commuting Hypergeometric Operators on the Complex Plane and Bispectrality”, J. Spectr. Theory, 11:2 (2021), 509–586
Bershtein O., Sinel'shchikov S., “Function Theory on a Q-Analog of Complex Hyperbolic Space”, J. Geom. Phys., 62:5 (2012), 1323–1337
Olga Bershtein, Yevgen Kolisnyk, “Harmonic Analysis on Quantum Complex Hyperbolic Spaces”, SIGMA, 7 (2011), 078, 19 pp.
Artemov A.A., “The Berezin Form and Harmonic Analysis on a Pair of Hyperboloids”, Doklady Mathematics, 84:1 (2011), 437–440
Kowalski K., Rembielinski J., Szczesniak A., “Pseudospherical Functions on a Hyperboloid of One Sheet”, J. Phys. A-Math. Theor., 44:8 (2011), 085302
V. F. Molchanov, “Canonical Representations and Overgroups for Hyperboloids”, Funct. Anal. Appl., 39:4 (2005), 284–295
Ochiai H., “Invariant Distributions on a Non-Isotropic Pseudo-Riemannian Symmetric Space of Rank One”, Indag. Math.-New Ser., 16:3-4 (2005), 631–638
A. A. Artemov, “Poisson transformation for one-sheeted hyperboloids”, Sb. Math., 195:5 (2004), 643–667
Molchanov, VF, “Berezin forms on line bundles over complex hyperbolic spaces”, Integral Equations and Operator Theory, 45:2 (2003), 177
van Dijk G., Sharshov YA., “The Plancherel Formula for Line Bundles on Complex Hyperbolic Spaces”, J. Math. Pures Appl., 79:5 (2000), 451–473
V. F. Molchanov, “Separation of Series for Hyperboloids”, Funct. Anal. Appl., 31:3 (1997), 176–182
Molchanov V., “Holomorphic Discrete Series for Hyperboloids of Hermitian Type”, J. Funct. Anal., 147:1 (1997), 26–50
Smirnov Y., Shustov A., “The Dynamical Group of a Relativistic Oscillator and the Properties of Spherical-Functions on Hyperboloids”, 34, no. 3, 1981, 349–355
Vilenkin N., Klesova L., “The Continuum Parts of the Bases on the Hyperboloid [X,X]=-1”, 31, no. 1, 1980, 108–115
V. F. Molchanov, “Reduction of representations of the complementary series of the $2+3$ de Sitter group with respect to the Lorentz group”, Theoret. and Math. Phys., 37:2 (1978), 1017–1022