|
This article is cited in 22 scientific papers (total in 22 papers)
On the convergence of Padé approximants in classes of holomorphic functions
E. A. Rakhmanov
Abstract:
In this paper it is proved that if, for any function $f$ holomorphic in a domain $D\subset\overline{\mathbf C}$ ($\infty\in D$), the sequence $\{\pi_n(f)\}_{n\in\mathbf N}$ of its diagonal Padé approximants (corresponding to the point $z=\infty$) converges to $f$ in measure in $D$, then $\operatorname{cap}(\overline{\mathbf C}\setminus D)=0$.
Bibliography: 8 titles.
Received: 28.09.1979
Citation:
E. A. Rakhmanov, “On the convergence of Padé approximants in classes of holomorphic functions”, Mat. Sb. (N.S.), 112(154):2(6) (1980), 162–169; Math. USSR-Sb., 40:2 (1981), 149–155
Linking options:
https://www.mathnet.ru/eng/sm2718https://doi.org/10.1070/SM1981v040n02ABEH001794 https://www.mathnet.ru/eng/sm/v154/i2/p162
|
Statistics & downloads: |
Abstract page: | 290 | Russian version PDF: | 78 | English version PDF: | 19 | References: | 50 |
|