Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1981, Volume 40, Issue 1, Pages 21–50
DOI: https://doi.org/10.1070/SM1981v040n01ABEH001634
(Mi sm2711)
 

On the strong extremum principle for a D-$(\Pi,\Omega)$-elliptically connected operator of second order

L. I. Kamynin, B. N. Khimchenko
References:
Abstract: In this paper the strong extremum principle is proved for a certain new class of second order operators with nonnegative characteristic form, without requiring the smoothness of their coefficients, which is essential in the converse of Rashevskii's theorem on completely nonholonomic systems.
Bibliography: 19 titles.
Received: 30.10.1978 and 20.06.1979
Bibliographic databases:
UDC: 517.947.42
MSC: Primary 47E05; Secondary 47B99
Language: English
Original paper language: Russian
Citation: L. I. Kamynin, B. N. Khimchenko, “On the strong extremum principle for a D-$(\Pi,\Omega)$-elliptically connected operator of second order”, Math. USSR-Sb., 40:1 (1981), 21–50
Citation in format AMSBIB
\Bibitem{KamKhi80}
\by L.~I.~Kamynin, B.~N.~Khimchenko
\paper On the strong extremum principle for a~D-$(\Pi,\Omega)$-elliptically connected operator of second order
\jour Math. USSR-Sb.
\yr 1981
\vol 40
\issue 1
\pages 21--50
\mathnet{http://mi.mathnet.ru//eng/sm2711}
\crossref{https://doi.org/10.1070/SM1981v040n01ABEH001634}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=575931}
\zmath{https://zbmath.org/?q=an:0466.35015|0444.35007}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1981MM63900002}
Linking options:
  • https://www.mathnet.ru/eng/sm2711
  • https://doi.org/10.1070/SM1981v040n01ABEH001634
  • https://www.mathnet.ru/eng/sm/v154/i1/p24
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025