Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2007, Volume 198, Issue 9, Pages 1247–1260
DOI: https://doi.org/10.1070/SM2007v198n09ABEH003881
(Mi sm2703)
 

This article is cited in 2 scientific papers (total in 2 papers)

The 2-cohomology of the group $\Omega^-(4,q)$ with coefficients in the natural module

V. P. Burichenko

Gomel Branch Of Institute of Mathematics, National Academy of Sciences of Belarus
References:
Abstract: The 2-cohomology group is determined for the finite simple orthogonal group $\Omega^-(4,q)$, where $q$ is odd, with coefficients in the natural module. For $q\ne9$ this group is trivial, and for $q=9$ it is isomorphic to $Z_3^4$. Thus Küsefoglu's result is corrected.
Bibliography: 5 titles.
Received: 09.08.2006
Russian version:
Matematicheskii Sbornik, 2007, Volume 198, Number 9, Pages 29–42
DOI: https://doi.org/10.4213/sm2703
Bibliographic databases:
UDC: 512.542.5
MSC: Primary 20G10; Secondary 20G05, 20G40
Language: English
Original paper language: Russian
Citation: V. P. Burichenko, “The 2-cohomology of the group $\Omega^-(4,q)$ with coefficients in the natural module”, Mat. Sb., 198:9 (2007), 29–42; Sb. Math., 198:9 (2007), 1247–1260
Citation in format AMSBIB
\Bibitem{Bur07}
\by V.~P.~Burichenko
\paper The 2-cohomology of the group $\Omega^-(4,q)$ with coefficients in the natural module
\jour Mat. Sb.
\yr 2007
\vol 198
\issue 9
\pages 29--42
\mathnet{http://mi.mathnet.ru/sm2703}
\crossref{https://doi.org/10.4213/sm2703}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2360789}
\zmath{https://zbmath.org/?q=an:1139.20046}
\elib{https://elibrary.ru/item.asp?id=9557503}
\transl
\jour Sb. Math.
\yr 2007
\vol 198
\issue 9
\pages 1247--1260
\crossref{https://doi.org/10.1070/SM2007v198n09ABEH003881}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000252573100002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-38749120913}
Linking options:
  • https://www.mathnet.ru/eng/sm2703
  • https://doi.org/10.1070/SM2007v198n09ABEH003881
  • https://www.mathnet.ru/eng/sm/v198/i9/p29
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:347
    Russian version PDF:164
    English version PDF:16
    References:48
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024