Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1977, Volume 31, Issue 4, Pages 425–443
DOI: https://doi.org/10.1070/SM1977v031n04ABEH003714
(Mi sm2687)
 

This article is cited in 3 scientific papers (total in 3 papers)

Compound operator equations in generalized derivatives and their applications to Appell sequences

Yu. F. Korobeinik
References:
Abstract: Let $E$ be a vector space of sequences of numbers, containing all of the basis vectors $e_k$, with the Köthe topology $\nu$; let $\{f_k\}$ be a fixed sequence of nonzero complex numbers; let $D$ be a Gel'fond–Leont'ev generalized differentiation operator:
$$ (Dc)_k=\frac{f_k}{f_{k+1}}c_{k+1},\qquad k=0,1,2,\dots, $$
and let $p$ be an operator of the form $(p_c)_m=(-1)^m, m=0,1,\dots$ .
In this work there is an investigation of an infinite-order operator
$$ Lc=\sum_{k=0}^\infty a_kD^kc+\sum_{k=0}^\infty b_kD^kP_c. $$

Under rather general assumptions it is shown that $L_0$ is an epimorphism of $(E,\nu)$, and the kernel is described; conditions are established for $L_0$ to be an isomorphism of $(E,\nu)$.
On the basis of these results criteria are found for an Appell sequence to be a quasi-power basis or representing system in $(E,\nu)$.
Bibliography: 16 titles.
Received: 02.12.1975
Russian version:
Matematicheskii Sbornik. Novaya Seriya, 1977, Volume 102(144), Number 4, Pages 475–498
Bibliographic databases:
UDC: 517.947.35
MSC: 46A45, 47A50, 46A35
Language: English
Original paper language: Russian
Citation: Yu. F. Korobeinik, “Compound operator equations in generalized derivatives and their applications to Appell sequences”, Mat. Sb. (N.S.), 102(144):4 (1977), 475–498; Math. USSR-Sb., 31:4 (1977), 425–443
Citation in format AMSBIB
\Bibitem{Kor77}
\by Yu.~F.~Korobeinik
\paper Compound operator equations in generalized derivatives and their applications to Appell sequences
\jour Mat. Sb. (N.S.)
\yr 1977
\vol 102(144)
\issue 4
\pages 475--498
\mathnet{http://mi.mathnet.ru/sm2687}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=467383}
\zmath{https://zbmath.org/?q=an:0355.47030|0388.47026}
\transl
\jour Math. USSR-Sb.
\yr 1977
\vol 31
\issue 4
\pages 425--443
\crossref{https://doi.org/10.1070/SM1977v031n04ABEH003714}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1977GB39600001}
Linking options:
  • https://www.mathnet.ru/eng/sm2687
  • https://doi.org/10.1070/SM1977v031n04ABEH003714
  • https://www.mathnet.ru/eng/sm/v144/i4/p475
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:377
    Russian version PDF:110
    English version PDF:16
    References:65
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024