Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1977, Volume 31, Issue 2, Pages 279–288
DOI: https://doi.org/10.1070/SM1977v031n02ABEH002303
(Mi sm2686)
 

This article is cited in 34 scientific papers (total in 34 papers)

On admissible rules of intuitionistic propositional logic

A. I. Citkin
References:
Abstract: This paper studies modus rules of deduction admissible in intuitionistic propositional logic (a rule is called a modus rule if it corresponds to some sequence and allows passage from the results of any substitution in the formulas in its antecedent to the result of the same substitution in its succedent). Examples of such rules are considered, as well as the derivability of certain rules from others by means of the intuitionistic propositional calculus. An infinite independent system of admissible modus rules is constructed. It is proved that a finite Gödel pseudo-Boolean algebra in which all modus rules are valid (i.e. the quasi-identities corresponding to them are valid) is isomorphic to a sequential union of Boolean algebras of power not greater than 4.
Figures: 3.
Bibliography: 17 titles.
Received: 27.01.1976
Bibliographic databases:
UDC: 517.12
MSC: Primary 02B05, 02C15, 02J05, 02D99, 02E05, 06A35; Secondary 02B99, 02E99, 06A25, 02H10, 06A40, 08A15
Language: English
Original paper language: Russian
Citation: A. I. Citkin, “On admissible rules of intuitionistic propositional logic”, Math. USSR-Sb., 31:2 (1977), 279–288
Citation in format AMSBIB
\Bibitem{Cit77}
\by A.~I.~Citkin
\paper On admissible rules of intuitionistic propositional logic
\jour Math. USSR-Sb.
\yr 1977
\vol 31
\issue 2
\pages 279--288
\mathnet{http://mi.mathnet.ru//eng/sm2686}
\crossref{https://doi.org/10.1070/SM1977v031n02ABEH002303}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=465801}
\zmath{https://zbmath.org/?q=an:0355.02016|0386.03011}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1977FY72200011}
Linking options:
  • https://www.mathnet.ru/eng/sm2686
  • https://doi.org/10.1070/SM1977v031n02ABEH002303
  • https://www.mathnet.ru/eng/sm/v144/i2/p314
  • This publication is cited in the following 34 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024