Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 1997, Volume 188, Issue 10, Pages 1561–1570
DOI: https://doi.org/10.1070/sm1997v188n10ABEH000268
(Mi sm268)
 

Quotient spaces modulo tori ad transitive actions of Lie groups. II

A. N. Shchetinin

N. E. Bauman Moscow State Technical University
References:
Abstract: Let $K$ be a simple compact connected Lie group of rank greater than $8$ and let $A$ be a torus of this group in general position and of corank $1$: it is proved that the canonical transitive action of $K/A$ is essentially unique.
Received: 01.10.1996
Bibliographic databases:
UDC: 512.816
MSC: Primary 53C30, 57S15; Secondary 57T15
Language: English
Original paper language: Russian
Citation: A. N. Shchetinin, “Quotient spaces modulo tori ad transitive actions of Lie groups. II”, Sb. Math., 188:10 (1997), 1561–1570
Citation in format AMSBIB
\Bibitem{Shc97}
\by A.~N.~Shchetinin
\paper Quotient spaces modulo tori ad transitive actions of Lie groups.~II
\jour Sb. Math.
\yr 1997
\vol 188
\issue 10
\pages 1561--1570
\mathnet{http://mi.mathnet.ru//eng/sm268}
\crossref{https://doi.org/10.1070/sm1997v188n10ABEH000268}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1485452}
\zmath{https://zbmath.org/?q=an:0914.57022}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000071663400015}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0031325444}
Linking options:
  • https://www.mathnet.ru/eng/sm268
  • https://doi.org/10.1070/sm1997v188n10ABEH000268
  • https://www.mathnet.ru/eng/sm/v188/i10/p149
    Cycle of papers
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:306
    Russian version PDF:86
    English version PDF:14
    References:54
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024