Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 1997, Volume 188, Issue 10, Pages 1543–1560
DOI: https://doi.org/10.1070/sm1997v188n10ABEH000267
(Mi sm267)
 

This article is cited in 2 scientific papers (total in 2 papers)

Approximately finite-dimensional $C^*$-algebras with projective Hilbert modules, their Bratteli diagrams, and $K_0$-groups

A. Ya. Helemskii

M. V. Lomonosov Moscow State University
References:
Abstract: This paper is devoted to the homological classification of approximately finite-dimensional $C^*$-algebras. The algebras in this class for which there exists at least one non-trivial Hilbert module and those for which there exists at least one faithful Hilbert module are described. The description is given in terms of the Bratteli diagrams of the algebras in question and in terms of the ordered $K_0$-groups of these algebras.
Received: 01.10.1996
Russian version:
Matematicheskii Sbornik, 1997, Volume 188, Number 10, Pages 131–148
DOI: https://doi.org/10.4213/sm267
Bibliographic databases:
UDC: 512.553.7+512.556
MSC: Primary 46L45, 46L80, 42A60; Secondary 46L35, 18G05
Language: English
Original paper language: Russian
Citation: A. Ya. Helemskii, “Approximately finite-dimensional $C^*$-algebras with projective Hilbert modules, their Bratteli diagrams, and $K_0$-groups”, Mat. Sb., 188:10 (1997), 131–148; Sb. Math., 188:10 (1997), 1543–1560
Citation in format AMSBIB
\Bibitem{Hel97}
\by A.~Ya.~Helemskii
\paper Approximately finite-dimensional $C^*$-algebras with projective Hilbert modules, their Bratteli diagrams, and $K_0$-groups
\jour Mat. Sb.
\yr 1997
\vol 188
\issue 10
\pages 131--148
\mathnet{http://mi.mathnet.ru/sm267}
\crossref{https://doi.org/10.4213/sm267}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1485451}
\zmath{https://zbmath.org/?q=an:0898.46054}
\transl
\jour Sb. Math.
\yr 1997
\vol 188
\issue 10
\pages 1543--1560
\crossref{https://doi.org/10.1070/sm1997v188n10ABEH000267}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000071663400014}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-5944223893}
Linking options:
  • https://www.mathnet.ru/eng/sm267
  • https://doi.org/10.1070/sm1997v188n10ABEH000267
  • https://www.mathnet.ru/eng/sm/v188/i10/p131
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:380
    Russian version PDF:189
    English version PDF:9
    References:89
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024